48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225 | class OctoAI(LLM):
model: str = Field(
default=DEFAULT_OCTOAI_MODEL, description="The model to use with OctoAI"
)
temperature: float = Field(
default=DEFAULT_TEMPERATURE,
description="The temperature to use during generation.",
ge=0.0,
le=1.0,
)
max_tokens: Optional[int] = Field(
description="The maximum number of tokens to generate.",
gt=0,
)
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the OctoAI SDK."
)
def __init__(
self,
model: str = DEFAULT_OCTOAI_MODEL,
temperature: float = DEFAULT_TEMPERATURE,
max_tokens: Optional[int] = None,
timeout: int = 120,
token: Optional[str] = None,
additional_kwargs: Optional[Dict[str, Any]] = None,
callback_manager: Optional[CallbackManager] = None,
# base class
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[MessagesToPromptCallable] = None,
completion_to_prompt: Optional[CompletionToPromptCallable] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
) -> None:
additional_kwargs = additional_kwargs or {}
callback_manager = callback_manager or CallbackManager([])
super().__init__(
callback_manager=callback_manager,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
model=model,
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs,
)
token = get_from_param_or_env("token", token, "OCTOAI_TOKEN", "")
if not token:
raise ValueError(
"You must provide an API token to use OctoAI. "
"You can either pass it in as an argument or set it `OCTOAI_TOKEN`."
"To generate a token in your OctoAI account settings: https://octoai.cloud/settings`."
)
try:
self._client = Client(api_key=token, timeout=timeout)
except ImportError as err:
raise ImportError(
"Could not import OctoAI python package. "
"Please install it with `pip install octoai-sdk`."
) from err
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
context_window=octoai_modelname_to_contextsize(self.model),
num_output=self.max_tokens or -1,
is_chat_model=True,
model_name=self.model,
)
@property
def _model_kwargs(self) -> Dict[str, Any]:
base_kwargs = {
"model": self.model,
"temperature": self.temperature,
}
if self.max_tokens:
base_kwargs["max_tokens"] = self.max_tokens
return {
**base_kwargs,
**self.additional_kwargs,
}
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
return {
**self._model_kwargs,
**kwargs,
}
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
response = self._client.text_gen.create_chat_completion(
messages=to_octoai_messages(messages), **self._get_all_kwargs(**kwargs)
)
return ChatResponse(
message=ChatMessage(
role=MessageRole.ASSISTANT, content=response.choices[0].message.content
),
raw=dict(response),
)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
streaming_response = self._client.text_gen.create_chat_completion_stream(
messages=to_octoai_messages(messages),
**self._get_all_kwargs(**kwargs),
)
def gen() -> ChatResponseGen:
content = ""
role = MessageRole.ASSISTANT
for completion in streaming_response:
content_delta = completion.choices[0].delta.content
if content_delta is None:
continue
content += content_delta
yield ChatResponse(
message=ChatMessage(role=role, content=content),
delta=content_delta,
raw=completion,
)
return gen()
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
complete_fn = chat_to_completion_decorator(self.chat)
return complete_fn(prompt, **kwargs)
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat)
return stream_complete_fn(prompt, **kwargs)
# ===== Async Endpoints =====
@llm_chat_callback()
async def achat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponse:
raise NotImplementedError
@llm_chat_callback()
async def astream_chat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponseAsyncGen:
raise NotImplementedError
@llm_completion_callback()
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
raise NotImplementedError
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
raise NotImplementedError
|