Skip to content

Mistralai

MistralAI #

Bases: FunctionCallingLLM

MistralAI LLM.

Examples:

pip install llama-index-llms-mistralai

from llama_index.llms.mistralai import MistralAI

# To customize your API key, do this
# otherwise it will lookup MISTRAL_API_KEY from your env variable
# llm = MistralAI(api_key="<api_key>")

# You can specify a custom endpoint by passing the `endpoint` variable or setting
# MISTRAL_ENDPOINT in your environment
# llm = MistralAI(endpoint="<endpoint>")

llm = MistralAI()

resp = llm.complete("Paul Graham is ")

print(resp)
Source code in llama-index-integrations/llms/llama-index-llms-mistralai/llama_index/llms/mistralai/base.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
class MistralAI(FunctionCallingLLM):
    """MistralAI LLM.

    Examples:
        `pip install llama-index-llms-mistralai`

        ```python
        from llama_index.llms.mistralai import MistralAI

        # To customize your API key, do this
        # otherwise it will lookup MISTRAL_API_KEY from your env variable
        # llm = MistralAI(api_key="<api_key>")

        # You can specify a custom endpoint by passing the `endpoint` variable or setting
        # MISTRAL_ENDPOINT in your environment
        # llm = MistralAI(endpoint="<endpoint>")

        llm = MistralAI()

        resp = llm.complete("Paul Graham is ")

        print(resp)
        ```
    """

    model: str = Field(
        default=DEFAULT_MISTRALAI_MODEL, description="The mistralai model to use."
    )
    temperature: float = Field(
        default=DEFAULT_TEMPERATURE,
        description="The temperature to use for sampling.",
        ge=0.0,
        le=1.0,
    )
    max_tokens: int = Field(
        default=DEFAULT_MISTRALAI_MAX_TOKENS,
        description="The maximum number of tokens to generate.",
        gt=0,
    )

    timeout: float = Field(
        default=120, description="The timeout to use in seconds.", ge=0
    )
    max_retries: int = Field(
        default=5, description="The maximum number of API retries.", ge=0
    )
    random_seed: Optional[int] = Field(
        default=None, description="The random seed to use for sampling."
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the MistralAI API."
    )

    _client: Mistral = PrivateAttr()

    def __init__(
        self,
        model: str = DEFAULT_MISTRALAI_MODEL,
        temperature: float = DEFAULT_TEMPERATURE,
        max_tokens: int = DEFAULT_MISTRALAI_MAX_TOKENS,
        timeout: int = 120,
        max_retries: int = 5,
        safe_mode: bool = False,
        random_seed: Optional[int] = None,
        api_key: Optional[str] = None,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
        endpoint: Optional[str] = None,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        callback_manager = callback_manager or CallbackManager([])

        api_key = get_from_param_or_env("api_key", api_key, "MISTRAL_API_KEY", "")

        if not api_key:
            raise ValueError(
                "You must provide an API key to use mistralai. "
                "You can either pass it in as an argument or set it `MISTRAL_API_KEY`."
            )

        # Use the custom endpoint if provided, otherwise default to DEFAULT_MISTRALAI_ENDPOINT
        endpoint = get_from_param_or_env(
            "endpoint", endpoint, "MISTRAL_ENDPOINT", DEFAULT_MISTRALAI_ENDPOINT
        )

        super().__init__(
            temperature=temperature,
            max_tokens=max_tokens,
            additional_kwargs=additional_kwargs,
            timeout=timeout,
            max_retries=max_retries,
            safe_mode=safe_mode,
            random_seed=random_seed,
            model=model,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )

        self._client = Mistral(
            api_key=api_key,
            server_url=endpoint,
        )

    @classmethod
    def class_name(cls) -> str:
        return "MistralAI_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=mistralai_modelname_to_contextsize(self.model),
            num_output=self.max_tokens,
            is_chat_model=True,
            model_name=self.model,
            random_seed=self.random_seed,
            is_function_calling_model=is_mistralai_function_calling_model(self.model),
        )

    @property
    def _model_kwargs(self) -> Dict[str, Any]:
        base_kwargs = {
            "model": self.model,
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
            "random_seed": self.random_seed,
            "retries": self.max_retries,
            "timeout_ms": self.timeout * 1000,
        }
        return {
            **base_kwargs,
            **self.additional_kwargs,
        }

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        return {
            **self._model_kwargs,
            **kwargs,
        }

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        # convert messages to mistral ChatMessage

        messages = to_mistral_chatmessage(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)
        response = self._client.chat.complete(messages=messages, **all_kwargs)

        tool_calls = response.choices[0].message.tool_calls

        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT,
                content=response.choices[0].message.content,
                additional_kwargs=(
                    {"tool_calls": tool_calls} if tool_calls is not None else {}
                ),
            ),
            raw=dict(response),
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        complete_fn = chat_to_completion_decorator(self.chat)
        return complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        # convert messages to mistral ChatMessage

        messages = to_mistral_chatmessage(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)

        response = self._client.chat.stream(messages=messages, **all_kwargs)

        def gen() -> ChatResponseGen:
            content = ""
            for chunk in response:
                delta = chunk.data.choices[0].delta
                role = delta.role or MessageRole.ASSISTANT
                # NOTE: Unlike openAI, we are directly injecting the tool calls
                additional_kwargs = {}
                if delta.tool_calls:
                    additional_kwargs["tool_calls"] = delta.tool_calls

                content_delta = delta.content
                if content_delta is None:
                    pass
                    # continue
                else:
                    content += content_delta
                yield ChatResponse(
                    message=ChatMessage(
                        role=role,
                        content=content,
                        additional_kwargs=additional_kwargs,
                    ),
                    delta=content_delta,
                    raw=chunk,
                )

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat)
        return stream_complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        # convert messages to mistral ChatMessage

        messages = to_mistral_chatmessage(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)
        response = await self._client.chat.complete_async(
            messages=messages, **all_kwargs
        )
        tool_calls = response.choices[0].message.tool_calls
        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT,
                content=response.choices[0].message.content,
                additional_kwargs=(
                    {"tool_calls": tool_calls} if tool_calls is not None else {}
                ),
            ),
            raw=dict(response),
        )

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        acomplete_fn = achat_to_completion_decorator(self.achat)
        return await acomplete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        # convert messages to mistral ChatMessage

        messages = to_mistral_chatmessage(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)

        response = await self._client.chat.stream_async(messages=messages, **all_kwargs)

        async def gen() -> ChatResponseAsyncGen:
            content = ""
            async for chunk in response:
                delta = chunk.data.choices[0].delta
                role = delta.role or MessageRole.ASSISTANT
                # NOTE: Unlike openAI, we are directly injecting the tool calls
                additional_kwargs = {}
                if delta.tool_calls:
                    additional_kwargs["tool_calls"] = delta.tool_calls

                content_delta = delta.content
                if content_delta is None:
                    pass
                    # continue
                else:
                    content += content_delta
                yield ChatResponse(
                    message=ChatMessage(
                        role=role,
                        content=content,
                        additional_kwargs=additional_kwargs,
                    ),
                    delta=content_delta,
                    raw=chunk,
                )

        return gen()

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        astream_complete_fn = astream_chat_to_completion_decorator(self.astream_chat)
        return await astream_complete_fn(prompt, **kwargs)

    def _prepare_chat_with_tools(
        self,
        tools: List["BaseTool"],
        user_msg: Optional[Union[str, ChatMessage]] = None,
        chat_history: Optional[List[ChatMessage]] = None,
        verbose: bool = False,
        allow_parallel_tool_calls: bool = False,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        """Prepare the chat with tools."""
        # misralai uses the same openai tool format
        tool_specs = [
            tool.metadata.to_openai_tool(skip_length_check=True) for tool in tools
        ]

        if isinstance(user_msg, str):
            user_msg = ChatMessage(role=MessageRole.USER, content=user_msg)

        messages = chat_history or []
        if user_msg:
            messages.append(user_msg)

        return {
            "messages": messages,
            "tools": tool_specs or None,
            **kwargs,
        }

    def _validate_chat_with_tools_response(
        self,
        response: ChatResponse,
        tools: List["BaseTool"],
        allow_parallel_tool_calls: bool = False,
        **kwargs: Any,
    ) -> ChatResponse:
        """Validate the response from chat_with_tools."""
        if not allow_parallel_tool_calls:
            force_single_tool_call(response)
        return response

    def get_tool_calls_from_response(
        self,
        response: "ChatResponse",
        error_on_no_tool_call: bool = True,
    ) -> List[ToolSelection]:
        """Predict and call the tool."""
        tool_calls = response.message.additional_kwargs.get("tool_calls", [])

        if len(tool_calls) < 1:
            if error_on_no_tool_call:
                raise ValueError(
                    f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
                )
            else:
                return []

        tool_selections = []
        for tool_call in tool_calls:
            if not isinstance(tool_call, ToolCall):
                raise ValueError("Invalid tool_call object")

            argument_dict = json.loads(tool_call.function.arguments)

            tool_selections.append(
                ToolSelection(
                    tool_id=tool_call.id,
                    tool_name=tool_call.function.name,
                    tool_kwargs=argument_dict,
                )
            )

        return tool_selections

    def fill_in_middle(
        self, prompt: str, suffix: str, stop: Optional[List[str]] = None
    ) -> CompletionResponse:
        if not is_mistralai_code_model(self.model):
            raise ValueError(
                "Please provide code model from MistralAI. Currently supported code model is 'codestral-latest'."
            )

        if stop:
            response = self._client.fim.complete(
                model=self.model, prompt=prompt, suffix=suffix, stop=stop
            )
        else:
            response = self._client.fim.complete(
                model=self.model, prompt=prompt, suffix=suffix
            )

        return CompletionResponse(
            text=response.choices[0].message.content, raw=dict(response)
        )

get_tool_calls_from_response #

get_tool_calls_from_response(response: ChatResponse, error_on_no_tool_call: bool = True) -> List[ToolSelection]

Predict and call the tool.

Source code in llama-index-integrations/llms/llama-index-llms-mistralai/llama_index/llms/mistralai/base.py
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def get_tool_calls_from_response(
    self,
    response: "ChatResponse",
    error_on_no_tool_call: bool = True,
) -> List[ToolSelection]:
    """Predict and call the tool."""
    tool_calls = response.message.additional_kwargs.get("tool_calls", [])

    if len(tool_calls) < 1:
        if error_on_no_tool_call:
            raise ValueError(
                f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
            )
        else:
            return []

    tool_selections = []
    for tool_call in tool_calls:
        if not isinstance(tool_call, ToolCall):
            raise ValueError("Invalid tool_call object")

        argument_dict = json.loads(tool_call.function.arguments)

        tool_selections.append(
            ToolSelection(
                tool_id=tool_call.id,
                tool_name=tool_call.function.name,
                tool_kwargs=argument_dict,
            )
        )

    return tool_selections