Contextual
Contextual #
Bases: OpenAILike
Generate a response using Contextual's Grounded Language Model (GLM), an LLM engineered specifically to prioritize faithfulness to in-context retrievals over parametric knowledge to reduce hallucinations in Retrieval-Augmented Generation.
The total request cannot exceed 32,000 tokens. Email [email protected] with any feedback or questions.
Examples:
pip install llama-index-llms-contextual
from llama_index.llms.contextual import Contextual
# Set up the Contextual class with the required model and API key
llm = Contextual(model="contextual-clm", api_key="your_api_key")
# Call the complete method with a query
response = llm.complete("Explain the importance of low latency LLMs")
print(response)
Source code in llama-index-integrations/llms/llama-index-llms-contextual/llama_index/llms/contextual/base.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
class_name
classmethod
#
class_name() -> str
Get class name.
Source code in llama-index-integrations/llms/llama-index-llms-contextual/llama_index/llms/contextual/base.py
79 80 81 82 |
|
complete #
complete(prompt: str, knowledge: Optional[List[str]] = None, **kwargs) -> CompletionResponse
Generate completion for the given prompt.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
The input prompt to generate completion for. |
required |
**kwargs
|
Additional keyword arguments for the API request. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
str |
CompletionResponse
|
The generated text completion. |
Source code in llama-index-integrations/llms/llama-index-llms-contextual/llama_index/llms/contextual/base.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
chat #
chat(messages: List[ChatMessage], **kwargs) -> ChatResponse
Generate a chat response for the given messages.
Source code in llama-index-integrations/llms/llama-index-llms-contextual/llama_index/llms/contextual/base.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
stream_chat #
stream_chat(messages: List[ChatMessage], **kwargs) -> ChatResponseGen
Generate a chat response for the given messages.
Source code in llama-index-integrations/llms/llama-index-llms-contextual/llama_index/llms/contextual/base.py
128 129 130 131 132 133 |
|
stream_complete #
stream_complete(prompt: str, **kwargs) -> ChatResponseGen
Generate a chat response for the given messages.
Source code in llama-index-integrations/llms/llama-index-llms-contextual/llama_index/llms/contextual/base.py
135 136 137 138 139 140 |
|