Skip to content

Zilliz

ZillizCloudPipelineIndex #

Bases: BaseManagedIndex

Zilliz Cloud Pipeline's Index.

The Zilliz Cloud Pipeline's index implements a managed index that uses Zilliz Cloud Pipelines as the backend.

Parameters:

Name Type Description Default
pipeline_ids dict

A dictionary of pipeline ids for INGESTION, SEARCH, DELETION.

required
api_key str

Zilliz Cloud's API key.

None
cloud_region str='gcp-us-west1'

The region of Zilliz Cloud's cluster. Defaults to 'gcp-us-west1'.

'gcp-us-west1'
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
class ZillizCloudPipelineIndex(BaseManagedIndex):
    """Zilliz Cloud Pipeline's Index.

    The Zilliz Cloud Pipeline's index implements a managed index that uses Zilliz Cloud Pipelines as the backend.

    Args:
        pipeline_ids (dict): A dictionary of pipeline ids for INGESTION, SEARCH, DELETION.
        api_key (str): Zilliz Cloud's API key.
        cloud_region (str='gcp-us-west1'): The region of Zilliz Cloud's cluster. Defaults to 'gcp-us-west1'.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.
    """

    def __init__(
        self,
        pipeline_ids: Dict,
        api_key: str = None,
        cloud_region: str = "gcp-us-west1",
        show_progress: bool = False,
        **kwargs: Any,
    ) -> None:
        self.token = api_key
        self.cloud_region = cloud_region
        self.domain = (
            f"https://controller.api.{cloud_region}.zillizcloud.com/v1/pipelines"
        )
        self.headers = {
            "Authorization": f"Bearer {self.token}",
            "Accept": "application/json",
            "Content-Type": "application/json",
        }
        self.pipeline_ids = pipeline_ids or {}

        if len(self.pipeline_ids) == 0:
            print(
                "Pipeline ids are required. You can use the classmethod `ZillizCloudPipelineIndex.create_pipelines` to create pipelines and get pipeline ids."
            )
        else:
            assert set(PIPELINE_TYPES).issubset(
                set(self.pipeline_ids.keys())
            ), f"Missing pipeline(s): {set(PIPELINE_TYPES) - set(self.pipeline_ids.keys())}"

        index_struct = ZillizCloudPipelineIndexStruct(
            index_id="-".join(pipeline_ids.values()),
            summary="Zilliz Cloud Pipeline Index",
        )

        super().__init__(
            show_progress=show_progress, index_struct=index_struct, **kwargs
        )

    def _insert_doc_url(self, url: str, metadata: Optional[Dict] = None) -> None:
        """Insert doc from url with an initialized index using doc pipelines."""
        ingest_pipe_id = self.pipeline_ids.get("INGESTION")
        ingestion_url = f"{self.domain}/{ingest_pipe_id}/run"

        if metadata is None:
            metadata = {}
        params = {"data": {"doc_url": url}}
        params["data"].update(metadata)
        response = requests.post(ingestion_url, headers=self.headers, json=params)
        if response.status_code != 200:
            raise RuntimeError(response.text)
        response_dict = response.json()
        if response_dict["code"] != 200:
            raise RuntimeError(response_dict)
        return response_dict["data"]

    def _insert(self, nodes: Sequence[BaseNode], metadata: Optional[Dict] = None):
        """Insert doc from text nodes with an initialized index using text pipelines."""
        ingest_pipe_id = self.pipeline_ids.get("INGESTION")
        ingestion_url = f"{self.domain}/{ingest_pipe_id}/run"

        text_list = [n.get_content() for n in nodes]
        if metadata is None:
            metadata = {}
        params = {"data": {"text_list": text_list}}
        params["data"].update(metadata)
        response = requests.post(ingestion_url, headers=self.headers, json=params)
        if response.status_code != 200:
            raise RuntimeError(response.text)
        response_dict = response.json()
        if response_dict["code"] != 200:
            raise RuntimeError(response_dict)
        return response_dict["data"]

    def delete_by_expression(self, expression: str):
        """Delete data by Milvus boolean expression if using the corresponding deletion pipeline."""
        deletion_pipe_id = self.pipeline_ids.get("DELETION")
        deletion_url = f"{self.domain}/{deletion_pipe_id}/run"

        params = {"data": {"expression": expression}}
        response = requests.post(deletion_url, headers=self.headers, json=params)
        if response.status_code != 200:
            raise RuntimeError(response.text)
        response_dict = response.json()
        if response_dict["code"] != 200:
            raise RuntimeError(response_dict)
        return response_dict["data"]

    def delete_by_doc_name(self, doc_name: str):
        """Delete data by doc name if using the corresponding deletion pipeline."""
        deletion_pipe_id = self.pipeline_ids.get("DELETION")
        deletion_url = f"{self.domain}/{deletion_pipe_id}/run"

        params = {"data": {"doc_name": doc_name}}
        response = requests.post(deletion_url, headers=self.headers, json=params)
        if response.status_code != 200:
            raise RuntimeError(response.text)
        response_dict = response.json()
        if response_dict["code"] != 200:
            raise RuntimeError(response_dict)
        return response_dict["data"]

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        raise NotImplementedError(
            "Deleting a reference document is not yet supported with Zilliz Cloud Pipeline."
        )

    def update_ref_doc(self, document: Document, **update_kwargs: Any) -> None:
        raise NotImplementedError(
            "Updating referenced document is not yet supported with Zilliz Cloud Pipeline."
        )

    def as_retriever(self, **kwargs: Any) -> BaseRetriever:
        """Return a retriever."""
        from llama_index.indices.managed.zilliz.retriever import (
            ZillizCloudPipelineRetriever,
        )

        return ZillizCloudPipelineRetriever(self, **kwargs)

    @staticmethod
    def create_pipelines(
        project_id: str,
        cluster_id: str,
        cloud_region: str = "gcp-us-west1",
        api_key: str = None,
        collection_name: str = "zcp_llamalection",
        data_type: str = "text",
        metadata_schema: Optional[Dict] = None,
        **kwargs: Any,
    ) -> dict:
        """Create INGESTION, SEARCH, DELETION pipelines using self.collection_name.

        Args:
            project_id (str): Zilliz Cloud's project ID.
            cluster_id (str): Zilliz Cloud's cluster ID.
            api_key (str=None): Zilliz Cloud's API key. Defaults to None.
            cloud_region (str='gcp-us-west1'): The region of Zilliz Cloud's cluster. Defaults to 'gcp-us-west1'.
            collection_name (str="zcp_llamalection"): A collection name, defaults to 'zcp_llamalection'.
            data_type (str="text"): The data type of pipelines, defaults to "text". Currently only "text" or "doc" are supported.
            metadata_schema (Dict=None): A dictionary of metadata schema, defaults to None. Use metadata name as key and the corresponding data type as value: {'field_name': 'field_type'}.
                Only support the following values as the field type: 'Bool', 'Int8', 'Int16', 'Int32', 'Int64', 'Float', 'Double', 'VarChar'.
            kwargs: optional function parameters to create ingestion & search pipelines.
                - language: The language of documents. Available options: "ENGLISH", "CHINESE".
                - embedding: The embedding service used in both ingestion & search pipeline.
                - reranker: The reranker service used in search function.
                - chunkSize: The chunk size to split a document. Only for doc data.
                - splitBy: The separators to chunking a document. Only for doc data.

        Returns:
            The pipeline ids of created pipelines.

        Example:
            >>> from llama_index.indices import ZillizCloudPipelineIndex
            >>> index = ZillizCloudPipelineIndex(
            >>>     project_id='YOUR_ZILLIZ_CLOUD_PROJECT_ID',
            >>>     cluster_id='YOUR_ZILLIZ_CLOUD_CLUSTER_ID',
            >>>     token='YOUR_ZILLIZ_CLOUD_API_KEY',
            >>>     collection_name='your_new_collection_name'
            >>> )
            >>> pipeline_ids = index.create_pipelines(
            >>>     metadata_schema={'year': 'Int32', 'author': 'VarChar'}  # optional, defaults to None
            >>> )
        """
        if data_type == "text":
            ingest_action = "INDEX_TEXT"
            search_action = "SEARCH_TEXT"
        elif data_type == "doc":
            ingest_action = "INDEX_DOC"
            search_action = "SEARCH_DOC_CHUNK"
        else:
            raise Exception("Only text or doc is supported as the data type.")

        params_dict = {}
        additional_params = kwargs or {}

        language = additional_params.pop("language", "ENGLISH")
        embedding = additional_params.pop("embedding", "zilliz/bge-base-en-v1.5")
        reranker = additional_params.pop("reranker", None)
        index_func = {
            "name": "llamaindex_index",
            "action": ingest_action,
            "language": language,
            "embedding": embedding,
        }
        index_func.update(additional_params)
        ingest_functions = [index_func]
        if metadata_schema:
            for k, v in metadata_schema.items():
                preserve_func = {
                    "name": f"keep_{k}",
                    "action": "PRESERVE",
                    "inputField": k,
                    "outputField": k,
                    "fieldType": v,
                }
                ingest_functions.append(preserve_func)
        params_dict["INGESTION"] = {
            "name": f"{collection_name}_ingestion",
            "projectId": project_id,
            "clusterId": cluster_id,
            "collectionName": collection_name,
            "type": "INGESTION",
            "functions": ingest_functions,
        }

        search_function = {
            "name": "llamaindex_search",
            "action": search_action,
            "clusterId": cluster_id,
            "collectionName": collection_name,
            "embedding": embedding,
        }
        if reranker:
            search_function["reranker"] = reranker
        params_dict["SEARCH"] = {
            "name": f"{collection_name}_search",
            "projectId": project_id,
            "type": "SEARCH",
            "functions": [search_function],
        }

        params_dict["DELETION"] = {
            "name": f"{collection_name}_deletion",
            "type": "DELETION",
            "functions": [
                {
                    "name": "purge_by_expression",
                    "action": "PURGE_BY_EXPRESSION",
                }
            ],
            "projectId": project_id,
            "clusterId": cluster_id,
            "collectionName": collection_name,
        }

        domain = f"https://controller.api.{cloud_region}.zillizcloud.com/v1/pipelines"
        headers = {
            "Authorization": f"Bearer {api_key}",
            "Accept": "application/json",
            "Content-Type": "application/json",
        }
        pipeline_ids = {}

        for k, v in params_dict.items():
            response = requests.post(domain, headers=headers, json=v)
            if response.status_code != 200:
                raise RuntimeError(response.text)
            response_dict = response.json()
            if response_dict["code"] != 200:
                raise RuntimeError(response_dict)
            pipeline_ids[k] = response_dict["data"]["pipelineId"]

        return pipeline_ids

    @classmethod
    def from_document_url(
        cls,
        url: str,
        pipeline_ids: Optional[Dict] = None,
        api_key: Optional[str] = None,
        metadata: Optional[Dict] = None,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> BaseManagedIndex:
        """Zilliz Cloud Pipeline loads document from a signed url and then builds auto index for it.

        Args:
            url: a gcs or s3 signed url.
            pipeline_ids (dict=None): A dictionary of pipeline ids for INGESTION, SEARCH, DELETION. Defaults to None.
            api_key (str): Zilliz Cloud's API Key.
            metadata (Dict=None): A dictionary of metadata. Defaults to None. The key must be string and the value must be a string, float, integer, or boolean.
            show_progress (bool): Whether to show tqdm progress bars. Defaults to False.

        Returns:
            An initialized ZillizCloudPipelineIndex

        Example:
            >>> from llama_index.indices import ZillizCloudPipelineIndex
            >>> api_key = "{YOUR_ZILLIZ_CLOUD_API_KEY}"
            >>> pipeline_ids = ZillizCloudPipelineIndex.create_pipelines(
            >>>     project_id="{YOUR_ZILLIZ_PROJECT_ID}",
            >>>     cluster_id="{YOUR_ZILLIZ_CLUSTER_ID}",
            >>>     api_key=api_key,
            >>>     data_type="doc"
            >>> )
            >>> ZillizCloudPipelineIndex.from_document_url(
            >>>     url='https://oss_bucket.test_doc.ext',
            >>>     pipeline_ids=pipeline_ids,
            >>>     api_key=api_key
            >>> )
        """
        metadata = metadata or {}
        index = cls(
            pipeline_ids=pipeline_ids,
            api_key=api_key,
            show_progress=show_progress,
            **kwargs,
        )

        try:
            index._insert_doc_url(url=url, metadata=metadata)
        except Exception as e:
            logger.error(
                "Failed to build managed index given document url (%s):\n%s", url, e
            )
        return index

    @classmethod
    def from_documents(
        cls: Type[IndexType],
        documents: Sequence[Document],
        pipeline_ids: Optional[Dict] = None,
        api_key: Optional[str] = None,
        show_progress: bool = False,
        metadata: Optional[Dict] = None,
        **kwargs: Any,
    ) -> IndexType:
        """Build a Zilliz Cloud Pipeline index from a sequence of documents.

        Args:
            documents: a sequence of llamaindex documents.
            pipeline_ids (dict=None): A dictionary of pipeline ids for INGESTION, SEARCH, DELETION. Defaults to None.
            api_key (str): Zilliz Cloud's API Key.
            metadata (Dict=None): A dictionary of metadata. Defaults to None. The key must be string and the value must be a string, float, integer, or boolean.
            show_progress (bool): Whether to show tqdm progress bars. Defaults to False.

        Returns:
            An initialized ZillizCloudPipelineIndex

        Example:
            >>> from llama_index.indices import ZillizCloudPipelineIndex
            >>> api_key = "{YOUR_ZILLIZ_CLOUD_API_KEY}"
            >>> pipeline_ids = ZillizCloudPipelineIndex.create_pipelines(
            >>>     project_id="{YOUR_ZILLIZ_PROJECT_ID}",
            >>>     cluster_id="{YOUR_ZILLIZ_CLUSTER_ID}",
            >>>     api_key=api_key,
            >>>     data_type="text"
            >>> )
            >>> ZillizCloudPipelineIndex.from_documents(
            >>>     documents=my_documents,
            >>>     pipeline_ids=pipeline_ids,
            >>>     api_key=api_key
            >>> )
        """
        metadata = metadata or {}
        index = cls(
            pipeline_ids=pipeline_ids,
            api_key=api_key,
            show_progress=show_progress,
            **kwargs,
        )

        try:
            index._insert(nodes=documents, metadata=metadata)
        except Exception as e:
            logger.error("Failed to build managed index given documents:\n%s", e)
        return index

    def _build_index_from_nodes(self, nodes: Sequence[BaseNode]) -> IndexDict:
        raise NotImplementedError(
            "Building index from nodes is not yet supported with Zilliz Cloud Pipeline."
        )

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        raise NotImplementedError(
            "Deleting nodes is not yet supported with Zilliz Cloud Pipeline."
        )

delete_by_expression #

delete_by_expression(expression: str)

Delete data by Milvus boolean expression if using the corresponding deletion pipeline.

Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
131
132
133
134
135
136
137
138
139
140
141
142
143
def delete_by_expression(self, expression: str):
    """Delete data by Milvus boolean expression if using the corresponding deletion pipeline."""
    deletion_pipe_id = self.pipeline_ids.get("DELETION")
    deletion_url = f"{self.domain}/{deletion_pipe_id}/run"

    params = {"data": {"expression": expression}}
    response = requests.post(deletion_url, headers=self.headers, json=params)
    if response.status_code != 200:
        raise RuntimeError(response.text)
    response_dict = response.json()
    if response_dict["code"] != 200:
        raise RuntimeError(response_dict)
    return response_dict["data"]

delete_by_doc_name #

delete_by_doc_name(doc_name: str)

Delete data by doc name if using the corresponding deletion pipeline.

Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
145
146
147
148
149
150
151
152
153
154
155
156
157
def delete_by_doc_name(self, doc_name: str):
    """Delete data by doc name if using the corresponding deletion pipeline."""
    deletion_pipe_id = self.pipeline_ids.get("DELETION")
    deletion_url = f"{self.domain}/{deletion_pipe_id}/run"

    params = {"data": {"doc_name": doc_name}}
    response = requests.post(deletion_url, headers=self.headers, json=params)
    if response.status_code != 200:
        raise RuntimeError(response.text)
    response_dict = response.json()
    if response_dict["code"] != 200:
        raise RuntimeError(response_dict)
    return response_dict["data"]

as_retriever #

as_retriever(**kwargs: Any) -> BaseRetriever

Return a retriever.

Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
171
172
173
174
175
176
177
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
    """Return a retriever."""
    from llama_index.indices.managed.zilliz.retriever import (
        ZillizCloudPipelineRetriever,
    )

    return ZillizCloudPipelineRetriever(self, **kwargs)

create_pipelines staticmethod #

create_pipelines(project_id: str, cluster_id: str, cloud_region: str = 'gcp-us-west1', api_key: str = None, collection_name: str = 'zcp_llamalection', data_type: str = 'text', metadata_schema: Optional[Dict] = None, **kwargs: Any) -> dict

Create INGESTION, SEARCH, DELETION pipelines using self.collection_name.

Parameters:

Name Type Description Default
project_id str

Zilliz Cloud's project ID.

required
cluster_id str

Zilliz Cloud's cluster ID.

required
api_key str=None

Zilliz Cloud's API key. Defaults to None.

None
cloud_region str='gcp-us-west1'

The region of Zilliz Cloud's cluster. Defaults to 'gcp-us-west1'.

'gcp-us-west1'
collection_name str="zcp_llamalection"

A collection name, defaults to 'zcp_llamalection'.

'zcp_llamalection'
data_type str="text"

The data type of pipelines, defaults to "text". Currently only "text" or "doc" are supported.

'text'
metadata_schema Dict=None

A dictionary of metadata schema, defaults to None. Use metadata name as key and the corresponding data type as value: {'field_name': 'field_type'}. Only support the following values as the field type: 'Bool', 'Int8', 'Int16', 'Int32', 'Int64', 'Float', 'Double', 'VarChar'.

None
kwargs Any

optional function parameters to create ingestion & search pipelines. - language: The language of documents. Available options: "ENGLISH", "CHINESE". - embedding: The embedding service used in both ingestion & search pipeline. - reranker: The reranker service used in search function. - chunkSize: The chunk size to split a document. Only for doc data. - splitBy: The separators to chunking a document. Only for doc data.

{}

Returns:

Type Description
dict

The pipeline ids of created pipelines.

Example

from llama_index.indices import ZillizCloudPipelineIndex index = ZillizCloudPipelineIndex( project_id='YOUR_ZILLIZ_CLOUD_PROJECT_ID', cluster_id='YOUR_ZILLIZ_CLOUD_CLUSTER_ID', token='YOUR_ZILLIZ_CLOUD_API_KEY', collection_name='your_new_collection_name' ) pipeline_ids = index.create_pipelines( metadata_schema={'year': 'Int32', 'author': 'VarChar'} # optional, defaults to None )

Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
@staticmethod
def create_pipelines(
    project_id: str,
    cluster_id: str,
    cloud_region: str = "gcp-us-west1",
    api_key: str = None,
    collection_name: str = "zcp_llamalection",
    data_type: str = "text",
    metadata_schema: Optional[Dict] = None,
    **kwargs: Any,
) -> dict:
    """Create INGESTION, SEARCH, DELETION pipelines using self.collection_name.

    Args:
        project_id (str): Zilliz Cloud's project ID.
        cluster_id (str): Zilliz Cloud's cluster ID.
        api_key (str=None): Zilliz Cloud's API key. Defaults to None.
        cloud_region (str='gcp-us-west1'): The region of Zilliz Cloud's cluster. Defaults to 'gcp-us-west1'.
        collection_name (str="zcp_llamalection"): A collection name, defaults to 'zcp_llamalection'.
        data_type (str="text"): The data type of pipelines, defaults to "text". Currently only "text" or "doc" are supported.
        metadata_schema (Dict=None): A dictionary of metadata schema, defaults to None. Use metadata name as key and the corresponding data type as value: {'field_name': 'field_type'}.
            Only support the following values as the field type: 'Bool', 'Int8', 'Int16', 'Int32', 'Int64', 'Float', 'Double', 'VarChar'.
        kwargs: optional function parameters to create ingestion & search pipelines.
            - language: The language of documents. Available options: "ENGLISH", "CHINESE".
            - embedding: The embedding service used in both ingestion & search pipeline.
            - reranker: The reranker service used in search function.
            - chunkSize: The chunk size to split a document. Only for doc data.
            - splitBy: The separators to chunking a document. Only for doc data.

    Returns:
        The pipeline ids of created pipelines.

    Example:
        >>> from llama_index.indices import ZillizCloudPipelineIndex
        >>> index = ZillizCloudPipelineIndex(
        >>>     project_id='YOUR_ZILLIZ_CLOUD_PROJECT_ID',
        >>>     cluster_id='YOUR_ZILLIZ_CLOUD_CLUSTER_ID',
        >>>     token='YOUR_ZILLIZ_CLOUD_API_KEY',
        >>>     collection_name='your_new_collection_name'
        >>> )
        >>> pipeline_ids = index.create_pipelines(
        >>>     metadata_schema={'year': 'Int32', 'author': 'VarChar'}  # optional, defaults to None
        >>> )
    """
    if data_type == "text":
        ingest_action = "INDEX_TEXT"
        search_action = "SEARCH_TEXT"
    elif data_type == "doc":
        ingest_action = "INDEX_DOC"
        search_action = "SEARCH_DOC_CHUNK"
    else:
        raise Exception("Only text or doc is supported as the data type.")

    params_dict = {}
    additional_params = kwargs or {}

    language = additional_params.pop("language", "ENGLISH")
    embedding = additional_params.pop("embedding", "zilliz/bge-base-en-v1.5")
    reranker = additional_params.pop("reranker", None)
    index_func = {
        "name": "llamaindex_index",
        "action": ingest_action,
        "language": language,
        "embedding": embedding,
    }
    index_func.update(additional_params)
    ingest_functions = [index_func]
    if metadata_schema:
        for k, v in metadata_schema.items():
            preserve_func = {
                "name": f"keep_{k}",
                "action": "PRESERVE",
                "inputField": k,
                "outputField": k,
                "fieldType": v,
            }
            ingest_functions.append(preserve_func)
    params_dict["INGESTION"] = {
        "name": f"{collection_name}_ingestion",
        "projectId": project_id,
        "clusterId": cluster_id,
        "collectionName": collection_name,
        "type": "INGESTION",
        "functions": ingest_functions,
    }

    search_function = {
        "name": "llamaindex_search",
        "action": search_action,
        "clusterId": cluster_id,
        "collectionName": collection_name,
        "embedding": embedding,
    }
    if reranker:
        search_function["reranker"] = reranker
    params_dict["SEARCH"] = {
        "name": f"{collection_name}_search",
        "projectId": project_id,
        "type": "SEARCH",
        "functions": [search_function],
    }

    params_dict["DELETION"] = {
        "name": f"{collection_name}_deletion",
        "type": "DELETION",
        "functions": [
            {
                "name": "purge_by_expression",
                "action": "PURGE_BY_EXPRESSION",
            }
        ],
        "projectId": project_id,
        "clusterId": cluster_id,
        "collectionName": collection_name,
    }

    domain = f"https://controller.api.{cloud_region}.zillizcloud.com/v1/pipelines"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Accept": "application/json",
        "Content-Type": "application/json",
    }
    pipeline_ids = {}

    for k, v in params_dict.items():
        response = requests.post(domain, headers=headers, json=v)
        if response.status_code != 200:
            raise RuntimeError(response.text)
        response_dict = response.json()
        if response_dict["code"] != 200:
            raise RuntimeError(response_dict)
        pipeline_ids[k] = response_dict["data"]["pipelineId"]

    return pipeline_ids

from_document_url classmethod #

from_document_url(url: str, pipeline_ids: Optional[Dict] = None, api_key: Optional[str] = None, metadata: Optional[Dict] = None, show_progress: bool = False, **kwargs: Any) -> BaseManagedIndex

Zilliz Cloud Pipeline loads document from a signed url and then builds auto index for it.

Parameters:

Name Type Description Default
url str

a gcs or s3 signed url.

required
pipeline_ids dict=None

A dictionary of pipeline ids for INGESTION, SEARCH, DELETION. Defaults to None.

None
api_key str

Zilliz Cloud's API Key.

None
metadata Dict=None

A dictionary of metadata. Defaults to None. The key must be string and the value must be a string, float, integer, or boolean.

None
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False

Returns:

Type Description
BaseManagedIndex

An initialized ZillizCloudPipelineIndex

Example

from llama_index.indices import ZillizCloudPipelineIndex api_key = "{YOUR_ZILLIZ_CLOUD_API_KEY}" pipeline_ids = ZillizCloudPipelineIndex.create_pipelines( project_id="{YOUR_ZILLIZ_PROJECT_ID}", cluster_id="{YOUR_ZILLIZ_CLUSTER_ID}", api_key=api_key, data_type="doc" ) ZillizCloudPipelineIndex.from_document_url( url='https://oss_bucket.test_doc.ext', pipeline_ids=pipeline_ids, api_key=api_key )

Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@classmethod
def from_document_url(
    cls,
    url: str,
    pipeline_ids: Optional[Dict] = None,
    api_key: Optional[str] = None,
    metadata: Optional[Dict] = None,
    show_progress: bool = False,
    **kwargs: Any,
) -> BaseManagedIndex:
    """Zilliz Cloud Pipeline loads document from a signed url and then builds auto index for it.

    Args:
        url: a gcs or s3 signed url.
        pipeline_ids (dict=None): A dictionary of pipeline ids for INGESTION, SEARCH, DELETION. Defaults to None.
        api_key (str): Zilliz Cloud's API Key.
        metadata (Dict=None): A dictionary of metadata. Defaults to None. The key must be string and the value must be a string, float, integer, or boolean.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.

    Returns:
        An initialized ZillizCloudPipelineIndex

    Example:
        >>> from llama_index.indices import ZillizCloudPipelineIndex
        >>> api_key = "{YOUR_ZILLIZ_CLOUD_API_KEY}"
        >>> pipeline_ids = ZillizCloudPipelineIndex.create_pipelines(
        >>>     project_id="{YOUR_ZILLIZ_PROJECT_ID}",
        >>>     cluster_id="{YOUR_ZILLIZ_CLUSTER_ID}",
        >>>     api_key=api_key,
        >>>     data_type="doc"
        >>> )
        >>> ZillizCloudPipelineIndex.from_document_url(
        >>>     url='https://oss_bucket.test_doc.ext',
        >>>     pipeline_ids=pipeline_ids,
        >>>     api_key=api_key
        >>> )
    """
    metadata = metadata or {}
    index = cls(
        pipeline_ids=pipeline_ids,
        api_key=api_key,
        show_progress=show_progress,
        **kwargs,
    )

    try:
        index._insert_doc_url(url=url, metadata=metadata)
    except Exception as e:
        logger.error(
            "Failed to build managed index given document url (%s):\n%s", url, e
        )
    return index

from_documents classmethod #

from_documents(documents: Sequence[Document], pipeline_ids: Optional[Dict] = None, api_key: Optional[str] = None, show_progress: bool = False, metadata: Optional[Dict] = None, **kwargs: Any) -> IndexType

Build a Zilliz Cloud Pipeline index from a sequence of documents.

Parameters:

Name Type Description Default
documents Sequence[Document]

a sequence of llamaindex documents.

required
pipeline_ids dict=None

A dictionary of pipeline ids for INGESTION, SEARCH, DELETION. Defaults to None.

None
api_key str

Zilliz Cloud's API Key.

None
metadata Dict=None

A dictionary of metadata. Defaults to None. The key must be string and the value must be a string, float, integer, or boolean.

None
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False

Returns:

Type Description
IndexType

An initialized ZillizCloudPipelineIndex

Example

from llama_index.indices import ZillizCloudPipelineIndex api_key = "{YOUR_ZILLIZ_CLOUD_API_KEY}" pipeline_ids = ZillizCloudPipelineIndex.create_pipelines( project_id="{YOUR_ZILLIZ_PROJECT_ID}", cluster_id="{YOUR_ZILLIZ_CLUSTER_ID}", api_key=api_key, data_type="text" ) ZillizCloudPipelineIndex.from_documents( documents=my_documents, pipeline_ids=pipeline_ids, api_key=api_key )

Source code in llama-index-integrations/indices/llama-index-indices-managed-zilliz/llama_index/indices/managed/zilliz/base.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
@classmethod
def from_documents(
    cls: Type[IndexType],
    documents: Sequence[Document],
    pipeline_ids: Optional[Dict] = None,
    api_key: Optional[str] = None,
    show_progress: bool = False,
    metadata: Optional[Dict] = None,
    **kwargs: Any,
) -> IndexType:
    """Build a Zilliz Cloud Pipeline index from a sequence of documents.

    Args:
        documents: a sequence of llamaindex documents.
        pipeline_ids (dict=None): A dictionary of pipeline ids for INGESTION, SEARCH, DELETION. Defaults to None.
        api_key (str): Zilliz Cloud's API Key.
        metadata (Dict=None): A dictionary of metadata. Defaults to None. The key must be string and the value must be a string, float, integer, or boolean.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.

    Returns:
        An initialized ZillizCloudPipelineIndex

    Example:
        >>> from llama_index.indices import ZillizCloudPipelineIndex
        >>> api_key = "{YOUR_ZILLIZ_CLOUD_API_KEY}"
        >>> pipeline_ids = ZillizCloudPipelineIndex.create_pipelines(
        >>>     project_id="{YOUR_ZILLIZ_PROJECT_ID}",
        >>>     cluster_id="{YOUR_ZILLIZ_CLUSTER_ID}",
        >>>     api_key=api_key,
        >>>     data_type="text"
        >>> )
        >>> ZillizCloudPipelineIndex.from_documents(
        >>>     documents=my_documents,
        >>>     pipeline_ids=pipeline_ids,
        >>>     api_key=api_key
        >>> )
    """
    metadata = metadata or {}
    index = cls(
        pipeline_ids=pipeline_ids,
        api_key=api_key,
        show_progress=show_progress,
        **kwargs,
    )

    try:
        index._insert(nodes=documents, metadata=metadata)
    except Exception as e:
        logger.error("Failed to build managed index given documents:\n%s", e)
    return index