Skip to content

Vectara

VectaraIndex #

Bases: BaseManagedIndex

Vectara Index.

The Vectara index implements a managed index that uses Vectara as the backend. Vectara performs a lot of the functions in traditional indexes in the backend: - breaks down a document into chunks (nodes) - Creates the embedding for each chunk (node) - Performs the search for the top k most similar nodes to a query - Optionally can perform summarization of the top k nodes

Parameters:

Name Type Description Default
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
Source code in llama-index-integrations/indices/llama-index-indices-managed-vectara/llama_index/indices/managed/vectara/base.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
class VectaraIndex(BaseManagedIndex):
    """
    Vectara Index.

    The Vectara index implements a managed index that uses Vectara as the backend.
    Vectara performs a lot of the functions in traditional indexes in the backend:
    - breaks down a document into chunks (nodes)
    - Creates the embedding for each chunk (node)
    - Performs the search for the top k most similar nodes to a query
    - Optionally can perform summarization of the top k nodes

    Args:
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.

    """

    def __init__(
        self,
        show_progress: bool = False,
        nodes: Optional[Sequence[BaseNode]] = None,
        vectara_customer_id: Optional[str] = None,
        vectara_corpus_id: Optional[str] = None,
        vectara_api_key: Optional[str] = None,
        use_core_api: bool = False,
        parallelize_ingest: bool = False,
        x_source_str: str = "llama_index",
        **kwargs: Any,
    ) -> None:
        """Initialize the Vectara API."""
        self.parallelize_ingest = parallelize_ingest
        index_struct = VectaraIndexStruct(
            index_id=str(vectara_corpus_id),
            summary="Vectara Index",
        )

        super().__init__(
            show_progress=show_progress,
            index_struct=index_struct,
            **kwargs,
        )
        self._vectara_customer_id = vectara_customer_id or os.environ.get(
            "VECTARA_CUSTOMER_ID"
        )
        self._vectara_corpus_id = vectara_corpus_id or str(
            os.environ.get("VECTARA_CORPUS_ID")
        )
        self._vectara_api_key = vectara_api_key or os.environ.get("VECTARA_API_KEY")
        if (
            self._vectara_customer_id is None
            or self._vectara_corpus_id is None
            or self._vectara_api_key is None
        ):
            _logger.warning(
                "Can't find Vectara credentials, customer_id or corpus_id in "
                "environment."
            )
            raise ValueError("Missing Vectara credentials")
        else:
            _logger.debug(f"Using corpus id {self._vectara_corpus_id}")

        # identifies usage source for internal measurement
        self._x_source_str = x_source_str

        # setup requests session with max 3 retries and 90s timeout
        # for calling Vectara API
        self._session = requests.Session()  # to reuse connections
        adapter = requests.adapters.HTTPAdapter(max_retries=3)
        self._session.mount("https://", adapter)
        self.vectara_api_timeout = 90
        self.use_core_api = use_core_api
        self.doc_ids: List[str] = []

        # if nodes is specified, consider each node as a single document
        # and use _build_index_from_nodes() to add them to the index
        if nodes is not None:
            self._build_index_from_nodes(nodes, use_core_api)

    def _build_index_from_nodes(
        self, nodes: Sequence[BaseNode], use_core_api: bool = False
    ) -> IndexDict:
        docs = [
            Document(
                text=node.get_content(metadata_mode=MetadataMode.NONE),
                metadata=node.metadata,  # type: ignore
                id_=node.id_,  # type: ignore
            )
            for node in nodes
        ]
        self.add_documents(docs, use_core_api)
        return self.index_struct

    def _get_corpus_id(self, corpus_id: str) -> str:
        """
        Get the corpus id to use for the index.
        If corpus_id is provided, check if it is one of the valid corpus ids.
        If not, use the first corpus id in the list.
        """
        if corpus_id is not None:
            if corpus_id in self._vectara_corpus_id.split(","):
                return corpus_id
        return self._vectara_corpus_id.split(",")[0]

    def _get_post_headers(self) -> dict:
        """Returns headers that should be attached to each post request."""
        return {
            "x-api-key": self._vectara_api_key,
            "customer-id": self._vectara_customer_id,
            "Content-Type": "application/json",
            "X-Source": self._x_source_str,
        }

    def _delete_doc(self, doc_id: str, corpus_id: Optional[str] = None) -> bool:
        """
        Delete a document from the Vectara corpus.

        Args:
            url (str): URL of the page to delete.
            doc_id (str): ID of the document to delete.
            corpus_id (str): corpus ID to delete the document from.

        Returns:
            bool: True if deletion was successful, False otherwise.
        """
        valid_corpus_id = self._get_corpus_id(corpus_id)
        body = {
            "customerId": self._vectara_customer_id,
            "corpusId": valid_corpus_id,
            "documentId": doc_id,
        }
        response = self._session.post(
            "https://api.vectara.io/v1/delete-doc",
            data=json.dumps(body),
            verify=True,
            headers=self._get_post_headers(),
            timeout=self.vectara_api_timeout,
        )

        if response.status_code != 200:
            _logger.error(
                f"Delete request failed for doc_id = {doc_id} with status code "
                f"{response.status_code}, reason {response.reason}, text "
                f"{response.text}"
            )
            return False
        return True

    def _index_doc(self, doc: dict, corpus_id) -> str:
        request: Dict[str, Any] = {}
        request["customerId"] = self._vectara_customer_id
        request["corpusId"] = corpus_id
        request["document"] = doc

        if "parts" in doc:
            api_url = "https://api.vectara.io/v1/core/index"
        else:
            api_url = "https://api.vectara.io/v1/index"

        response = self._session.post(
            headers=self._get_post_headers(),
            url=api_url,
            data=json.dumps(request),
            timeout=self.vectara_api_timeout,
            verify=True,
        )

        status_code = response.status_code
        result = response.json()

        status_str = result["status"]["code"] if "status" in result else None
        if status_code == 409 and status_str and (status_str == "ALREADY_EXISTS"):
            return "E_ALREADY_EXISTS"
        elif status_code == 200 and status_str and (status_str == "INVALID_ARGUMENT"):
            return "E_INVALID_ARGUMENT"
        elif status_str and (status_str == "FORBIDDEN"):
            return "E_NO_PERMISSIONS"
        else:
            return "E_SUCCEEDED"

    def _insert(
        self,
        nodes: Sequence[BaseNode],
        corpus_id: Optional[str] = None,
        use_core_api: bool = False,
        **insert_kwargs: Any,
    ) -> None:
        """Insert a set of documents (each a node)."""

        def gen_hash(s: str) -> str:
            hash_object = blake2b(digest_size=32)
            hash_object.update(s.encode("utf-8"))
            return hash_object.hexdigest()

        docs = []
        for node in nodes:
            metadata = node.metadata.copy()
            metadata["framework"] = "llama_index"
            section_key = "parts" if use_core_api else "section"
            text = node.get_content(metadata_mode=MetadataMode.NONE)
            doc_id = gen_hash(text)
            doc = {
                "documentId": doc_id,
                "metadataJson": json.dumps(node.metadata),
                section_key: [{"text": text}],
            }
            docs.append(doc)

        valid_corpus_id = self._get_corpus_id(corpus_id)
        if self.parallelize_ingest:
            with ThreadPoolExecutor() as executor:
                futures = [
                    executor.submit(self._index_doc, doc, valid_corpus_id)
                    for doc in docs
                ]
                for future in futures:
                    ecode = future.result()
                    if ecode != "E_SUCCEEDED":
                        _logger.error(
                            f"Error indexing document in Vectara with error code {ecode}"
                        )
            self.doc_ids.extend([doc["documentId"] for doc in docs])
        else:
            for doc in docs:
                ecode = self._index_doc(doc, valid_corpus_id)
                if ecode != "E_SUCCEEDED":
                    _logger.error(
                        f"Error indexing document in Vectara with error code {ecode}"
                    )
                self.doc_ids.append(doc["documentId"])

    def add_documents(
        self,
        docs: Sequence[Document],
        corpus_id: Optional[str],
        use_core_api: bool = False,
        allow_update: bool = True,
    ) -> None:
        nodes = [
            TextNode(text=doc.get_content(), metadata=doc.metadata) for doc in docs  # type: ignore
        ]
        self._insert(nodes, corpus_id, use_core_api)

    def insert_file(
        self,
        file_path: str,
        metadata: Optional[dict] = None,
        corpus_id: Optional[str] = None,
        **insert_kwargs: Any,
    ) -> Optional[str]:
        """
        Vectara provides a way to add files (binary or text) directly via our API
        where pre-processing and chunking occurs internally in an optimal way
        This method provides a way to use that API in Llama_index.

        # ruff: noqa: E501
        Full API Docs: https://docs.vectara.com/docs/api-reference/indexing-apis/
        file-upload/file-upload-filetypes

        Args:
            file_path: local file path
                Files could be text, HTML, PDF, markdown, doc/docx, ppt/pptx, etc.
                see API docs for full list
            metadata: Optional list of metadata associated with the file

        Returns:
            List of ids associated with each of the files indexed
        """
        if not os.path.exists(file_path):
            _logger.error(f"File {file_path} does not exist")
            return None

        metadata = metadata or {}
        metadata["framework"] = "llama_index"
        files: dict = {
            "file": (file_path, open(file_path, "rb")),
            "doc_metadata": json.dumps(metadata),
        }
        headers = self._get_post_headers()
        headers.pop("Content-Type")
        valid_corpus_id = self._get_corpus_id(corpus_id)
        response = self._session.post(
            f"https://api.vectara.io/upload?c={self._vectara_customer_id}&o={valid_corpus_id}&d=True",
            files=files,
            verify=True,
            headers=headers,
            timeout=self.vectara_api_timeout,
        )

        res = response.json()
        if response.status_code == 409:
            _logger.info(
                f"File {file_path} already exists on Vectara, skipping indexing"
            )
            return None
        elif response.status_code == 200:
            quota = res["response"]["quotaConsumed"]["numChars"]
            if quota == 0:
                _logger.warning(
                    f"File Upload for {file_path} returned 0 quota consumed, please check your Vectara account quota"
                )
            doc_id = res["document"]["documentId"]
            self.doc_ids.append(doc_id)
            return doc_id
        else:
            _logger.info(f"Error indexing file {file_path}: {res}")
            return None

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        raise NotImplementedError(
            "Vectara does not support deleting a reference document"
        )

    def update_ref_doc(self, document: Document, **update_kwargs: Any) -> None:
        raise NotImplementedError(
            "Vectara does not support updating a reference document"
        )

    def as_retriever(self, **kwargs: Any) -> BaseRetriever:
        """Return a Retriever for this managed index."""
        from llama_index.indices.managed.vectara.retriever import (
            VectaraRetriever,
        )

        return VectaraRetriever(self, **kwargs)

    def as_chat_engine(self, **kwargs: Any) -> BaseChatEngine:
        kwargs["summary_enabled"] = True
        retriever = self.as_retriever(**kwargs)
        kwargs.pop("summary_enabled")
        from llama_index.indices.managed.vectara.query import (
            VectaraChatEngine,
        )

        return VectaraChatEngine.from_args(retriever, **kwargs)  # type: ignore

    def as_query_engine(
        self, llm: Optional[LLMType] = None, **kwargs: Any
    ) -> BaseQueryEngine:
        if kwargs.get("summary_enabled", True):
            from llama_index.indices.managed.vectara.query import (
                VectaraQueryEngine,
            )

            kwargs["summary_enabled"] = True
            retriever = self.as_retriever(**kwargs)
            return VectaraQueryEngine.from_args(retriever=retriever, **kwargs)  # type: ignore
        else:
            from llama_index.core.query_engine.retriever_query_engine import (
                RetrieverQueryEngine,
            )

            llm = (
                resolve_llm(llm, callback_manager=self._callback_manager)
                or Settings.llm
            )

            retriever = self.as_retriever(**kwargs)
            response_synthesizer = get_response_synthesizer(
                response_mode=ResponseMode.COMPACT,
                llm=llm,
            )
            return RetrieverQueryEngine.from_args(
                retriever=retriever,
                response_synthesizer=response_synthesizer,
                **kwargs,
            )

    @classmethod
    def from_documents(
        cls: Type[IndexType],
        documents: Sequence[Document],
        show_progress: bool = False,
        callback_manager: Optional[CallbackManager] = None,
        transformations: Optional[List[TransformComponent]] = None,
        **kwargs: Any,
    ) -> IndexType:
        """Build a Vectara index from a sequence of documents."""
        nodes = [
            TextNode(text=document.get_content(), metadata=document.metadata)  # type: ignore
            for document in documents
        ]
        return cls(
            nodes=nodes,
            show_progress=show_progress,
            **kwargs,
        )

insert_file #

insert_file(file_path: str, metadata: Optional[dict] = None, corpus_id: Optional[str] = None, **insert_kwargs: Any) -> Optional[str]

Vectara provides a way to add files (binary or text) directly via our API where pre-processing and chunking occurs internally in an optimal way This method provides a way to use that API in Llama_index.

ruff: noqa: E501#

Full API Docs: https://docs.vectara.com/docs/api-reference/indexing-apis/ file-upload/file-upload-filetypes

Parameters:

Name Type Description Default
file_path str

local file path Files could be text, HTML, PDF, markdown, doc/docx, ppt/pptx, etc. see API docs for full list

required
metadata Optional[dict]

Optional list of metadata associated with the file

None

Returns:

Type Description
Optional[str]

List of ids associated with each of the files indexed

Source code in llama-index-integrations/indices/llama-index-indices-managed-vectara/llama_index/indices/managed/vectara/base.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def insert_file(
    self,
    file_path: str,
    metadata: Optional[dict] = None,
    corpus_id: Optional[str] = None,
    **insert_kwargs: Any,
) -> Optional[str]:
    """
    Vectara provides a way to add files (binary or text) directly via our API
    where pre-processing and chunking occurs internally in an optimal way
    This method provides a way to use that API in Llama_index.

    # ruff: noqa: E501
    Full API Docs: https://docs.vectara.com/docs/api-reference/indexing-apis/
    file-upload/file-upload-filetypes

    Args:
        file_path: local file path
            Files could be text, HTML, PDF, markdown, doc/docx, ppt/pptx, etc.
            see API docs for full list
        metadata: Optional list of metadata associated with the file

    Returns:
        List of ids associated with each of the files indexed
    """
    if not os.path.exists(file_path):
        _logger.error(f"File {file_path} does not exist")
        return None

    metadata = metadata or {}
    metadata["framework"] = "llama_index"
    files: dict = {
        "file": (file_path, open(file_path, "rb")),
        "doc_metadata": json.dumps(metadata),
    }
    headers = self._get_post_headers()
    headers.pop("Content-Type")
    valid_corpus_id = self._get_corpus_id(corpus_id)
    response = self._session.post(
        f"https://api.vectara.io/upload?c={self._vectara_customer_id}&o={valid_corpus_id}&d=True",
        files=files,
        verify=True,
        headers=headers,
        timeout=self.vectara_api_timeout,
    )

    res = response.json()
    if response.status_code == 409:
        _logger.info(
            f"File {file_path} already exists on Vectara, skipping indexing"
        )
        return None
    elif response.status_code == 200:
        quota = res["response"]["quotaConsumed"]["numChars"]
        if quota == 0:
            _logger.warning(
                f"File Upload for {file_path} returned 0 quota consumed, please check your Vectara account quota"
            )
        doc_id = res["document"]["documentId"]
        self.doc_ids.append(doc_id)
        return doc_id
    else:
        _logger.info(f"Error indexing file {file_path}: {res}")
        return None

as_retriever #

as_retriever(**kwargs: Any) -> BaseRetriever

Return a Retriever for this managed index.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vectara/llama_index/indices/managed/vectara/base.py
365
366
367
368
369
370
371
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
    """Return a Retriever for this managed index."""
    from llama_index.indices.managed.vectara.retriever import (
        VectaraRetriever,
    )

    return VectaraRetriever(self, **kwargs)

from_documents classmethod #

from_documents(documents: Sequence[Document], show_progress: bool = False, callback_manager: Optional[CallbackManager] = None, transformations: Optional[List[TransformComponent]] = None, **kwargs: Any) -> IndexType

Build a Vectara index from a sequence of documents.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vectara/llama_index/indices/managed/vectara/base.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
@classmethod
def from_documents(
    cls: Type[IndexType],
    documents: Sequence[Document],
    show_progress: bool = False,
    callback_manager: Optional[CallbackManager] = None,
    transformations: Optional[List[TransformComponent]] = None,
    **kwargs: Any,
) -> IndexType:
    """Build a Vectara index from a sequence of documents."""
    nodes = [
        TextNode(text=document.get_content(), metadata=document.metadata)  # type: ignore
        for document in documents
    ]
    return cls(
        nodes=nodes,
        show_progress=show_progress,
        **kwargs,
    )