Bases: BaseEvaluator
Embedding similarity evaluator.
Evaluate the quality of a question answering system by
comparing the similarity between embeddings of the generated answer
and the reference answer.
Inspired by this paper:
- Semantic Answer Similarity for Evaluating Question Answering Models
https://arxiv.org/pdf/2108.06130.pdf
Parameters:
Name |
Type |
Description |
Default |
similarity_threshold
|
float
|
Embedding similarity threshold for "passing".
Defaults to 0.8.
|
0.8
|
Source code in llama-index-core/llama_index/core/evaluation/semantic_similarity.py
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 | class SemanticSimilarityEvaluator(BaseEvaluator):
"""Embedding similarity evaluator.
Evaluate the quality of a question answering system by
comparing the similarity between embeddings of the generated answer
and the reference answer.
Inspired by this paper:
- Semantic Answer Similarity for Evaluating Question Answering Models
https://arxiv.org/pdf/2108.06130.pdf
Args:
similarity_threshold (float): Embedding similarity threshold for "passing".
Defaults to 0.8.
"""
def __init__(
self,
embed_model: Optional[BaseEmbedding] = None,
similarity_fn: Optional[Callable[..., float]] = None,
similarity_mode: Optional[SimilarityMode] = None,
similarity_threshold: float = 0.8,
) -> None:
self._embed_model = embed_model or Settings.embed_model
if similarity_fn is None:
similarity_mode = similarity_mode or SimilarityMode.DEFAULT
self._similarity_fn = lambda x, y: similarity(x, y, mode=similarity_mode)
else:
if similarity_mode is not None:
raise ValueError(
"Cannot specify both similarity_fn and similarity_mode"
)
self._similarity_fn = similarity_fn
self._similarity_threshold = similarity_threshold
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
async def aevaluate(
self,
query: Optional[str] = None,
response: Optional[str] = None,
contexts: Optional[Sequence[str]] = None,
reference: Optional[str] = None,
**kwargs: Any,
) -> EvaluationResult:
del query, contexts, kwargs # Unused
if response is None or reference is None:
raise ValueError("Must specify both response and reference")
response_embedding = await self._embed_model.aget_text_embedding(response)
reference_embedding = await self._embed_model.aget_text_embedding(reference)
similarity_score = self._similarity_fn(response_embedding, reference_embedding)
passing = similarity_score >= self._similarity_threshold
return EvaluationResult(
score=similarity_score,
passing=passing,
feedback=f"Similarity score: {similarity_score}",
)
|