Skip to content

Retrieval

Evaluation modules.

BaseRetrievalEvaluator #

Bases: BaseModel

Base Retrieval Evaluator class.

Parameters:

Name Type Description Default
metrics List[BaseRetrievalMetric]

List of metrics to evaluate

required
Source code in llama-index-core/llama_index/core/evaluation/retrieval/base.py
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
class BaseRetrievalEvaluator(BaseModel):
    """Base Retrieval Evaluator class."""

    model_config = ConfigDict(arbitrary_types_allowed=True)
    metrics: List[BaseRetrievalMetric] = Field(
        ..., description="List of metrics to evaluate"
    )

    @classmethod
    def from_metric_names(
        cls, metric_names: List[str], **kwargs: Any
    ) -> "BaseRetrievalEvaluator":
        """Create evaluator from metric names.

        Args:
            metric_names (List[str]): List of metric names
            **kwargs: Additional arguments for the evaluator

        """
        metric_types = resolve_metrics(metric_names)
        return cls(metrics=[metric() for metric in metric_types], **kwargs)

    @abstractmethod
    async def _aget_retrieved_ids_and_texts(
        self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT
    ) -> Tuple[List[str], List[str]]:
        """Get retrieved ids and texts."""
        raise NotImplementedError

    def evaluate(
        self,
        query: str,
        expected_ids: List[str],
        expected_texts: Optional[List[str]] = None,
        mode: RetrievalEvalMode = RetrievalEvalMode.TEXT,
        **kwargs: Any,
    ) -> RetrievalEvalResult:
        """Run evaluation results with query string and expected ids.

        Args:
            query (str): Query string
            expected_ids (List[str]): Expected ids

        Returns:
            RetrievalEvalResult: Evaluation result

        """
        return asyncio_run(
            self.aevaluate(
                query=query,
                expected_ids=expected_ids,
                expected_texts=expected_texts,
                mode=mode,
                **kwargs,
            )
        )

    # @abstractmethod
    async def aevaluate(
        self,
        query: str,
        expected_ids: List[str],
        expected_texts: Optional[List[str]] = None,
        mode: RetrievalEvalMode = RetrievalEvalMode.TEXT,
        **kwargs: Any,
    ) -> RetrievalEvalResult:
        """Run evaluation with query string, retrieved contexts,
        and generated response string.

        Subclasses can override this method to provide custom evaluation logic and
        take in additional arguments.
        """
        retrieved_ids, retrieved_texts = await self._aget_retrieved_ids_and_texts(
            query, mode
        )
        metric_dict = {}
        for metric in self.metrics:
            eval_result = metric.compute(
                query, expected_ids, retrieved_ids, expected_texts, retrieved_texts
            )
            metric_dict[metric.metric_name] = eval_result

        return RetrievalEvalResult(
            query=query,
            expected_ids=expected_ids,
            expected_texts=expected_texts,
            retrieved_ids=retrieved_ids,
            retrieved_texts=retrieved_texts,
            mode=mode,
            metric_dict=metric_dict,
        )

    async def aevaluate_dataset(
        self,
        dataset: EmbeddingQAFinetuneDataset,
        workers: int = 2,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> List[RetrievalEvalResult]:
        """Run evaluation with dataset."""
        semaphore = asyncio.Semaphore(workers)

        async def eval_worker(
            query: str, expected_ids: List[str], mode: RetrievalEvalMode
        ) -> RetrievalEvalResult:
            async with semaphore:
                return await self.aevaluate(query, expected_ids=expected_ids, mode=mode)

        response_jobs = []
        mode = RetrievalEvalMode.from_str(dataset.mode)
        for query_id, query in dataset.queries.items():
            expected_ids = dataset.relevant_docs[query_id]
            response_jobs.append(eval_worker(query, expected_ids, mode))
        if show_progress:
            from tqdm.asyncio import tqdm_asyncio

            eval_results = await tqdm_asyncio.gather(*response_jobs)
        else:
            eval_results = await asyncio.gather(*response_jobs)

        return eval_results

from_metric_names classmethod #

from_metric_names(metric_names: List[str], **kwargs: Any) -> BaseRetrievalEvaluator

Create evaluator from metric names.

Parameters:

Name Type Description Default
metric_names List[str]

List of metric names

required
**kwargs Any

Additional arguments for the evaluator

{}
Source code in llama-index-core/llama_index/core/evaluation/retrieval/base.py
84
85
86
87
88
89
90
91
92
93
94
95
96
@classmethod
def from_metric_names(
    cls, metric_names: List[str], **kwargs: Any
) -> "BaseRetrievalEvaluator":
    """Create evaluator from metric names.

    Args:
        metric_names (List[str]): List of metric names
        **kwargs: Additional arguments for the evaluator

    """
    metric_types = resolve_metrics(metric_names)
    return cls(metrics=[metric() for metric in metric_types], **kwargs)

evaluate #

evaluate(query: str, expected_ids: List[str], expected_texts: Optional[List[str]] = None, mode: RetrievalEvalMode = TEXT, **kwargs: Any) -> RetrievalEvalResult

Run evaluation results with query string and expected ids.

Parameters:

Name Type Description Default
query str

Query string

required
expected_ids List[str]

Expected ids

required

Returns:

Name Type Description
RetrievalEvalResult RetrievalEvalResult

Evaluation result

Source code in llama-index-core/llama_index/core/evaluation/retrieval/base.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def evaluate(
    self,
    query: str,
    expected_ids: List[str],
    expected_texts: Optional[List[str]] = None,
    mode: RetrievalEvalMode = RetrievalEvalMode.TEXT,
    **kwargs: Any,
) -> RetrievalEvalResult:
    """Run evaluation results with query string and expected ids.

    Args:
        query (str): Query string
        expected_ids (List[str]): Expected ids

    Returns:
        RetrievalEvalResult: Evaluation result

    """
    return asyncio_run(
        self.aevaluate(
            query=query,
            expected_ids=expected_ids,
            expected_texts=expected_texts,
            mode=mode,
            **kwargs,
        )
    )

aevaluate async #

aevaluate(query: str, expected_ids: List[str], expected_texts: Optional[List[str]] = None, mode: RetrievalEvalMode = TEXT, **kwargs: Any) -> RetrievalEvalResult

Run evaluation with query string, retrieved contexts, and generated response string.

Subclasses can override this method to provide custom evaluation logic and take in additional arguments.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/base.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
async def aevaluate(
    self,
    query: str,
    expected_ids: List[str],
    expected_texts: Optional[List[str]] = None,
    mode: RetrievalEvalMode = RetrievalEvalMode.TEXT,
    **kwargs: Any,
) -> RetrievalEvalResult:
    """Run evaluation with query string, retrieved contexts,
    and generated response string.

    Subclasses can override this method to provide custom evaluation logic and
    take in additional arguments.
    """
    retrieved_ids, retrieved_texts = await self._aget_retrieved_ids_and_texts(
        query, mode
    )
    metric_dict = {}
    for metric in self.metrics:
        eval_result = metric.compute(
            query, expected_ids, retrieved_ids, expected_texts, retrieved_texts
        )
        metric_dict[metric.metric_name] = eval_result

    return RetrievalEvalResult(
        query=query,
        expected_ids=expected_ids,
        expected_texts=expected_texts,
        retrieved_ids=retrieved_ids,
        retrieved_texts=retrieved_texts,
        mode=mode,
        metric_dict=metric_dict,
    )

aevaluate_dataset async #

aevaluate_dataset(dataset: EmbeddingQAFinetuneDataset, workers: int = 2, show_progress: bool = False, **kwargs: Any) -> List[RetrievalEvalResult]

Run evaluation with dataset.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/base.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
async def aevaluate_dataset(
    self,
    dataset: EmbeddingQAFinetuneDataset,
    workers: int = 2,
    show_progress: bool = False,
    **kwargs: Any,
) -> List[RetrievalEvalResult]:
    """Run evaluation with dataset."""
    semaphore = asyncio.Semaphore(workers)

    async def eval_worker(
        query: str, expected_ids: List[str], mode: RetrievalEvalMode
    ) -> RetrievalEvalResult:
        async with semaphore:
            return await self.aevaluate(query, expected_ids=expected_ids, mode=mode)

    response_jobs = []
    mode = RetrievalEvalMode.from_str(dataset.mode)
    for query_id, query in dataset.queries.items():
        expected_ids = dataset.relevant_docs[query_id]
        response_jobs.append(eval_worker(query, expected_ids, mode))
    if show_progress:
        from tqdm.asyncio import tqdm_asyncio

        eval_results = await tqdm_asyncio.gather(*response_jobs)
    else:
        eval_results = await asyncio.gather(*response_jobs)

    return eval_results

RetrieverEvaluator #

Bases: BaseRetrievalEvaluator

Retriever evaluator.

This module will evaluate a retriever using a set of metrics.

Parameters:

Name Type Description Default
metrics List[BaseRetrievalMetric]

Sequence of metrics to evaluate

required
retriever BaseRetriever

Retriever to evaluate.

required
node_postprocessors Optional[List[BaseNodePostprocessor]]

Post-processor to apply after retrieval.

None
Source code in llama-index-core/llama_index/core/evaluation/retrieval/evaluator.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class RetrieverEvaluator(BaseRetrievalEvaluator):
    """Retriever evaluator.

    This module will evaluate a retriever using a set of metrics.

    Args:
        metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate
        retriever: Retriever to evaluate.
        node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval.


    """

    retriever: BaseRetriever = Field(..., description="Retriever to evaluate")
    node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field(
        default=None, description="Optional post-processor"
    )

    async def _aget_retrieved_ids_and_texts(
        self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT
    ) -> Tuple[List[str], List[str]]:
        """Get retrieved ids and texts, potentially applying a post-processor."""
        retrieved_nodes = await self.retriever.aretrieve(query)

        if self.node_postprocessors:
            for node_postprocessor in self.node_postprocessors:
                retrieved_nodes = node_postprocessor.postprocess_nodes(
                    retrieved_nodes, query_str=query
                )

        return (
            [node.node.node_id for node in retrieved_nodes],
            [node.node.text for node in retrieved_nodes],
        )

RetrievalEvalResult #

Bases: BaseModel

Retrieval eval result.

NOTE: this abstraction might change in the future.

Parameters:

Name Type Description Default
query str

Query string

required
expected_ids List[str]

Expected ids

required
expected_texts List[str] | None

Expected texts associated with nodes provided in expected_ids

None
retrieved_ids List[str]

Retrieved ids

required
retrieved_texts List[str]

Retrieved texts

required
mode RetrievalEvalMode

text or image

<RetrievalEvalMode.TEXT: 'text'>
metric_dict Dict[str, RetrievalMetricResult]

Metric dictionary for the evaluation

required

Attributes:

Name Type Description
query str

Query string

expected_ids List[str]

Expected ids

retrieved_ids List[str]

Retrieved ids

metric_dict Dict[str, BaseRetrievalMetric]

Metric dictionary for the evaluation

Source code in llama-index-core/llama_index/core/evaluation/retrieval/base.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class RetrievalEvalResult(BaseModel):
    """Retrieval eval result.

    NOTE: this abstraction might change in the future.

    Attributes:
        query (str): Query string
        expected_ids (List[str]): Expected ids
        retrieved_ids (List[str]): Retrieved ids
        metric_dict (Dict[str, BaseRetrievalMetric]): \
            Metric dictionary for the evaluation

    """

    model_config = ConfigDict(arbitrary_types_allowed=True)
    query: str = Field(..., description="Query string")
    expected_ids: List[str] = Field(..., description="Expected ids")
    expected_texts: Optional[List[str]] = Field(
        default=None,
        description="Expected texts associated with nodes provided in `expected_ids`",
    )
    retrieved_ids: List[str] = Field(..., description="Retrieved ids")
    retrieved_texts: List[str] = Field(..., description="Retrieved texts")
    mode: "RetrievalEvalMode" = Field(
        default=RetrievalEvalMode.TEXT, description="text or image"
    )
    metric_dict: Dict[str, RetrievalMetricResult] = Field(
        ..., description="Metric dictionary for the evaluation"
    )

    @property
    def metric_vals_dict(self) -> Dict[str, float]:
        """Dictionary of metric values."""
        return {k: v.score for k, v in self.metric_dict.items()}

    def __str__(self) -> str:
        """String representation."""
        return f"Query: {self.query}\n" f"Metrics: {self.metric_vals_dict!s}\n"

metric_vals_dict property #

metric_vals_dict: Dict[str, float]

Dictionary of metric values.