Skip to content

Multi modal

Evaluation modules.

MultiModalRetrieverEvaluator #

Bases: BaseRetrievalEvaluator

Retriever evaluator.

This module will evaluate a retriever using a set of metrics.

Parameters:

Name Type Description Default
metrics List[BaseRetrievalMetric]

Sequence of metrics to evaluate

required
retriever BaseRetriever

Retriever to evaluate.

required
node_postprocessors Optional[List[BaseNodePostprocessor]]

Post-processor to apply after retrieval.

None
Source code in llama-index-core/llama_index/core/evaluation/retrieval/evaluator.py
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
class MultiModalRetrieverEvaluator(BaseRetrievalEvaluator):
    """Retriever evaluator.

    This module will evaluate a retriever using a set of metrics.

    Args:
        metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate
        retriever: Retriever to evaluate.
        node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval.

    """

    retriever: BaseRetriever = Field(..., description="Retriever to evaluate")
    node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field(
        default=None, description="Optional post-processor"
    )

    async def _aget_retrieved_ids_and_texts(
        self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT
    ) -> Tuple[List[str], List[str]]:
        """Get retrieved ids."""
        retrieved_nodes = await self.retriever.aretrieve(query)
        image_nodes: List[ImageNode] = []
        text_nodes: List[TextNode] = []

        if self.node_postprocessors:
            for node_postprocessor in self.node_postprocessors:
                retrieved_nodes = node_postprocessor.postprocess_nodes(
                    retrieved_nodes, query_str=query
                )

        for scored_node in retrieved_nodes:
            node = scored_node.node
            if isinstance(node, ImageNode):
                image_nodes.append(node)
            if node.text:
                text_nodes.append(node)

        if mode == "text":
            return (
                [node.node_id for node in text_nodes],
                [node.text for node in text_nodes],
            )
        elif mode == "image":
            return (
                [node.node_id for node in image_nodes],
                [node.text for node in image_nodes],
            )
        else:
            raise ValueError("Unsupported mode.")