Skip to content

Nomic

NomicEmbedding #

Bases: MultiModalEmbedding

NomicEmbedding uses the Nomic API to generate embeddings.

Source code in llama-index-integrations/embeddings/llama-index-embeddings-nomic/llama_index/embeddings/nomic/base.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
class NomicEmbedding(MultiModalEmbedding):
    """NomicEmbedding uses the Nomic API to generate embeddings."""

    query_task_type: Optional[NomicTaskType] = Field(
        description="Task type for queries",
    )
    document_task_type: Optional[NomicTaskType] = Field(
        description="Task type for documents",
    )
    dimensionality: Optional[int] = Field(
        description="Embedding dimension, for use with Matryoshka-capable models",
    )
    model_name: str = Field(description="Embedding model name")
    vision_model_name: Optional[str] = Field(
        description="Vision model name for multimodal embeddings",
    )
    inference_mode: NomicInferenceMode = Field(
        description="Whether to generate embeddings locally",
    )
    device: Optional[str] = Field(description="Device to use for local embeddings")

    def __init__(
        self,
        model_name: str = "nomic-embed-text-v1",
        vision_model_name: Optional[str] = "nomic-embed-vision-v1",
        embed_batch_size: int = 32,
        api_key: Optional[str] = None,
        callback_manager: Optional[CallbackManager] = None,
        query_task_type: Optional[str] = "search_query",
        document_task_type: Optional[str] = "search_document",
        dimensionality: Optional[int] = 768,
        inference_mode: str = "remote",
        device: Optional[str] = None,
    ):
        if api_key is not None:
            nomic.login(api_key)

        super().__init__(
            model_name=model_name,
            vision_model_name=vision_model_name,
            embed_batch_size=embed_batch_size,
            callback_manager=callback_manager,
            query_task_type=query_task_type,
            document_task_type=document_task_type,
            dimensionality=dimensionality,
            inference_mode=inference_mode,
            device=device,
        )

    @classmethod
    def class_name(cls) -> str:
        return "NomicEmbedding"

    def load_images(self, image_paths: List[ImageType]) -> List[Image.Image]:
        """Load images from the specified paths."""
        return [Image.open(image_path).convert("RGB") for image_path in image_paths]

    def _embed_text(
        self, texts: List[str], task_type: Optional[str] = None
    ) -> List[List[float]]:
        result = nomic.embed.text(
            texts,
            model=self.model_name,
            task_type=task_type,
            dimensionality=self.dimensionality,
            inference_mode=self.inference_mode,
            device=self.device,
        )
        return result["embeddings"]

    def _embed_image(self, images_paths: List[ImageType]) -> List[List[float]]:
        images = self.load_images(images_paths)
        result = nomic.embed.image(images, model=self.vision_model_name)
        return result["embeddings"]

    def _get_query_embedding(self, query: str) -> List[float]:
        return self._embed_text([query], task_type=self.query_task_type)[0]

    async def _aget_query_embedding(self, query: str) -> List[float]:
        self._warn_async()
        return self._get_query_embedding(query)

    def _get_text_embedding(self, text: str) -> List[float]:
        return self._embed_text([text], task_type=self.document_task_type)[0]

    async def _aget_text_embedding(self, text: str) -> List[float]:
        self._warn_async()
        return self._get_text_embedding(text)

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        return self._embed_text(texts, task_type=self.document_task_type)

    def _get_image_embedding(self, image: ImageType) -> List[float]:
        return self._embed_image([image])[0]

    async def _aget_image_embedding(self, image: ImageType) -> List[float]:
        self._warn_async()
        return self._get_image_embedding(image)

    def _get_image_embeddings(self, images: List[ImageType]) -> List[List[float]]:
        return self._embed_image(images)

    def _warn_async(self) -> None:
        warnings.warn(
            f"{self.class_name()} does not implement async embeddings, falling back to sync method.",
        )

load_images #

load_images(image_paths: List[ImageType]) -> List[Image]

Load images from the specified paths.

Source code in llama-index-integrations/embeddings/llama-index-embeddings-nomic/llama_index/embeddings/nomic/base.py
88
89
90
def load_images(self, image_paths: List[ImageType]) -> List[Image.Image]:
    """Load images from the specified paths."""
    return [Image.open(image_path).convert("RGB") for image_path in image_paths]