Skip to content

Huggingface

HuggingFaceEmbedding #

Bases: MultiModalEmbedding

HuggingFace class for text and image embeddings.

Parameters:

Name Type Description Default
model_name str

If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from the Hugging Face Hub with that name. Defaults to DEFAULT_HUGGINGFACE_EMBEDDING_MODEL.

DEFAULT_HUGGINGFACE_EMBEDDING_MODEL
max_length Optional[int]

Max sequence length to set in Model's config. If None, it will use the Model's default max_seq_length. Defaults to None.

None
query_instruction Optional[str]

Instruction to prepend to query text. Defaults to None.

None
text_instruction Optional[str]

Instruction to prepend to text. Defaults to None.

None
normalize bool

Whether to normalize returned vectors. Defaults to True.

True
embed_batch_size int

The batch size used for the computation. Defaults to DEFAULT_EMBED_BATCH_SIZE.

DEFAULT_EMBED_BATCH_SIZE
cache_folder Optional[str]

Path to store models. Defaults to None.

None
trust_remote_code bool

Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. Defaults to False.

False
device Optional[str]

Device (like "cuda", "cpu", "mps", "npu", ...) that should be used for computation. If None, checks if a GPU can be used. Defaults to None.

None
callback_manager Optional[CallbackManager]

Callback Manager. Defaults to None.

None
parallel_process bool

If True it will start a multi-process pool to process the encoding with several independent processes. Great for vast amount of texts. Defaults to False.

False
target_devices Optional[List[str]]

PyTorch target devices, e.g. ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...], or ["cpu", "cpu", "cpu", "cpu"]. If target_devices is None and CUDA/NPU is available, then all available CUDA/NPU devices will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU devices will be used. This parameter will only be used if parallel_process = True. Defaults to None.

None
num_workers int

The number of workers to use for async embedding calls. Defaults to None.

required
**model_kwargs

Other model kwargs to use

{}
tokenizer_name Optional[str]

"Deprecated"

'deprecated'
pooling str

"Deprecated"

'deprecated'
model Optional[Any]

"Deprecated"

'deprecated'
tokenizer Optional[Any]

"Deprecated"

'deprecated'

Examples:

pip install llama-index-embeddings-huggingface

from llama_index.core import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding

# Set up the HuggingFaceEmbedding class with the required model to use with llamaindex core.
embed_model  = HuggingFaceEmbedding(model_name = "BAAI/bge-small-en")
Settings.embed_model = embed_model

# Or if you want to Embed some text separately
embeddings = embed_model.get_text_embedding("I want to Embed this text!")
Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
class HuggingFaceEmbedding(MultiModalEmbedding):
    """
    HuggingFace class for text and image embeddings.

    Args:
        model_name (str, optional): If it is a filepath on disc, it loads the model from that path.
            If it is not a path, it first tries to download a pre-trained SentenceTransformer model.
            If that fails, tries to construct a model from the Hugging Face Hub with that name.
            Defaults to DEFAULT_HUGGINGFACE_EMBEDDING_MODEL.
        max_length (Optional[int], optional): Max sequence length to set in Model's config. If None,
            it will use the Model's default max_seq_length. Defaults to None.
        query_instruction (Optional[str], optional): Instruction to prepend to query text.
            Defaults to None.
        text_instruction (Optional[str], optional): Instruction to prepend to text.
            Defaults to None.
        normalize (bool, optional): Whether to normalize returned vectors.
            Defaults to True.
        embed_batch_size (int, optional): The batch size used for the computation.
            Defaults to DEFAULT_EMBED_BATCH_SIZE.
        cache_folder (Optional[str], optional): Path to store models. Defaults to None.
        trust_remote_code (bool, optional): Whether or not to allow for custom models defined on the
            Hub in their own modeling files. This option should only be set to True for repositories
            you trust and in which you have read the code, as it will execute code present on the Hub
            on your local machine. Defaults to False.
        device (Optional[str], optional): Device (like "cuda", "cpu", "mps", "npu", ...) that should
            be used for computation. If None, checks if a GPU can be used. Defaults to None.
        callback_manager (Optional[CallbackManager], optional): Callback Manager. Defaults to None.
        parallel_process (bool, optional): If True it will start a multi-process pool to process the
            encoding with several independent processes. Great for vast amount of texts.
            Defaults to False.
        target_devices (Optional[List[str]], optional): PyTorch target devices, e.g.
            ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...], or ["cpu", "cpu", "cpu", "cpu"].
            If target_devices is None and CUDA/NPU is available, then all available CUDA/NPU devices
            will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU devices
            will be used. This parameter will only be used if `parallel_process = True`.
            Defaults to None.
        num_workers (int, optional): The number of workers to use for async embedding calls.
            Defaults to None.
        **model_kwargs: Other model kwargs to use
        tokenizer_name (Optional[str], optional): "Deprecated"
        pooling (str, optional): "Deprecated"
        model (Optional[Any], optional): "Deprecated"
        tokenizer (Optional[Any], optional): "Deprecated"

    Examples:
        `pip install llama-index-embeddings-huggingface`

        ```python
        from llama_index.core import Settings
        from llama_index.embeddings.huggingface import HuggingFaceEmbedding

        # Set up the HuggingFaceEmbedding class with the required model to use with llamaindex core.
        embed_model  = HuggingFaceEmbedding(model_name = "BAAI/bge-small-en")
        Settings.embed_model = embed_model

        # Or if you want to Embed some text separately
        embeddings = embed_model.get_text_embedding("I want to Embed this text!")

        ```

    """

    max_length: int = Field(
        default=DEFAULT_HUGGINGFACE_LENGTH, description="Maximum length of input.", gt=0
    )
    normalize: bool = Field(default=True, description="Normalize embeddings or not.")
    query_instruction: Optional[str] = Field(
        description="Instruction to prepend to query text.", default=None
    )
    text_instruction: Optional[str] = Field(
        description="Instruction to prepend to text.", default=None
    )
    cache_folder: Optional[str] = Field(
        description="Cache folder for Hugging Face files.", default=None
    )

    _model: SentenceTransformer = PrivateAttr()
    _device: str = PrivateAttr()
    _parallel_process: bool = PrivateAttr()
    _target_devices: Optional[List[str]] = PrivateAttr()

    def __init__(
        self,
        model_name: str = DEFAULT_HUGGINGFACE_EMBEDDING_MODEL,
        tokenizer_name: Optional[str] = "deprecated",
        pooling: str = "deprecated",
        max_length: Optional[int] = None,
        query_instruction: Optional[str] = None,
        text_instruction: Optional[str] = None,
        normalize: bool = True,
        model: Optional[Any] = "deprecated",
        tokenizer: Optional[Any] = "deprecated",
        embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
        cache_folder: Optional[str] = None,
        trust_remote_code: bool = False,
        device: Optional[str] = None,
        callback_manager: Optional[CallbackManager] = None,
        parallel_process: bool = False,
        target_devices: Optional[List[str]] = None,
        **model_kwargs,
    ):
        device = device or infer_torch_device()
        cache_folder = cache_folder or get_cache_dir()

        for variable, value in [
            ("model", model),
            ("tokenizer", tokenizer),
            ("pooling", pooling),
            ("tokenizer_name", tokenizer_name),
        ]:
            if value != "deprecated":
                raise ValueError(
                    f"{variable} is deprecated. Please remove it from the arguments."
                )
        if model_name is None:
            raise ValueError("The `model_name` argument must be provided.")

        model = SentenceTransformer(
            model_name,
            device=device,
            cache_folder=cache_folder,
            trust_remote_code=trust_remote_code,
            prompts={
                "query": query_instruction
                or get_query_instruct_for_model_name(model_name),
                "text": text_instruction
                or get_text_instruct_for_model_name(model_name),
            },
            **model_kwargs,
        )
        if max_length:
            model.max_seq_length = max_length
        else:
            max_length = model.max_seq_length

        super().__init__(
            embed_batch_size=embed_batch_size,
            callback_manager=callback_manager,
            model_name=model_name,
            max_length=max_length,
            normalize=normalize,
            query_instruction=query_instruction,
            text_instruction=text_instruction,
        )
        self._device = device
        self._model = model
        self._parallel_process = parallel_process
        self._target_devices = target_devices

    @classmethod
    def class_name(cls) -> str:
        return "HuggingFaceEmbedding"

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10),
        reraise=True,
    )
    def _embed_with_retry(
        self,
        inputs: List[Union[str, BytesIO]],
        prompt_name: Optional[str] = None,
    ) -> List[List[float]]:
        """
        Generates embeddings with retry mechanism.

        Args:
            inputs: List of texts or images to embed
            prompt_name: Optional prompt type

        Returns:
            List of embedding vectors

        Raises:
            Exception: If embedding fails after retries
        """
        try:
            if self._parallel_process:
                pool = self._model.start_multi_process_pool(
                    target_devices=self._target_devices
                )
                emb = self._model.encode_multi_process(
                    inputs,
                    pool=pool,
                    batch_size=self.embed_batch_size,
                    prompt_name=prompt_name,
                    normalize_embeddings=self.normalize,
                )
                self._model.stop_multi_process_pool(pool=pool)
            else:
                emb = self._model.encode(
                    inputs,
                    batch_size=self.embed_batch_size,
                    prompt_name=prompt_name,
                    normalize_embeddings=self.normalize,
                )
            return emb.tolist()
        except Exception as e:
            logger.warning(f"Embedding attempt failed: {e!s}")
            raise

    def _embed(
        self,
        inputs: List[Union[str, BytesIO]],
        prompt_name: Optional[str] = None,
    ) -> List[List[float]]:
        """
        Generates Embeddings with input validation and retry mechanism.

        Args:
            sentences: Texts or Sentences to embed
            prompt_name: The name of the prompt to use for encoding

        Returns:
            List of embedding vectors

        Raises:
            ValueError: If any input text is invalid
            Exception: If embedding fails after retries
        """
        return self._embed_with_retry(inputs, prompt_name)

    def _get_query_embedding(self, query: str) -> List[float]:
        """
        Generates Embeddings for Query.

        Args:
            query (str): Query text/sentence

        Returns:
            List[float]: numpy array of embeddings
        """
        return self._embed(query, prompt_name="query")

    async def _aget_query_embedding(self, query: str) -> List[float]:
        """
        Generates Embeddings for Query Asynchronously.

        Args:
            query (str): Query text/sentence

        Returns:
            List[float]: numpy array of embeddings
        """
        return self._get_query_embedding(query)

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """
        Generates Embeddings for text Asynchronously.

        Args:
            text (str): Text/Sentence

        Returns:
            List[float]: numpy array of embeddings
        """
        return self._get_text_embedding(text)

    def _get_text_embedding(self, text: str) -> List[float]:
        """
        Generates Embeddings for text.

        Args:
            text (str): Text/sentences

        Returns:
            List[float]: numpy array of embeddings
        """
        return self._embed(text, prompt_name="text")

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """
        Generates Embeddings for text.

        Args:
            texts (List[str]): Texts / Sentences

        Returns:
            List[List[float]]: numpy array of embeddings
        """
        return self._embed(texts, prompt_name="text")

    def _get_image_embedding(self, img_file_path: ImageType) -> List[float]:
        """Generate embedding for an image."""
        return self._embed([img_file_path])[0]

    async def _aget_image_embedding(self, img_file_path: ImageType) -> List[float]:
        """Generate embedding for an image asynchronously."""
        return self._get_image_embedding(img_file_path)

    def _get_image_embeddings(
        self, img_file_paths: List[ImageType]
    ) -> List[List[float]]:
        """Generate embeddings for multiple images."""
        return self._embed(img_file_paths)

    async def _aget_image_embeddings(
        self, img_file_paths: List[ImageType]
    ) -> List[List[float]]:
        """Generate embeddings for multiple images asynchronously."""
        return self._get_image_embeddings(img_file_paths)

HuggingFaceInferenceAPIEmbedding #

Bases: BaseEmbedding

Wrapper on the Hugging Face's Inference API for embeddings.

Overview of the design: - Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction

Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
@deprecated(
    "Deprecated in favor of `HuggingFaceInferenceAPIEmbedding` from `llama-index-embeddings-huggingface-api` which should be used instead.",
    action="always",
)
class HuggingFaceInferenceAPIEmbedding(BaseEmbedding):  # type: ignore[misc]
    """
    Wrapper on the Hugging Face's Inference API for embeddings.

    Overview of the design:
    - Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction
    """

    pooling: Optional[Pooling] = Field(
        default=Pooling.CLS,
        description="Pooling strategy. If None, the model's default pooling is used.",
    )
    query_instruction: Optional[str] = Field(
        default=None, description="Instruction to prepend during query embedding."
    )
    text_instruction: Optional[str] = Field(
        default=None, description="Instruction to prepend during text embedding."
    )

    # Corresponds with huggingface_hub.InferenceClient
    model_name: Optional[str] = Field(
        default=None,
        description="Hugging Face model name. If None, the task will be used.",
    )
    token: Union[str, bool, None] = Field(
        default=None,
        description=(
            "Hugging Face token. Will default to the locally saved token. Pass "
            "token=False if you don’t want to send your token to the server."
        ),
    )
    timeout: Optional[float] = Field(
        default=None,
        description=(
            "The maximum number of seconds to wait for a response from the server."
            " Loading a new model in Inference API can take up to several minutes."
            " Defaults to None, meaning it will loop until the server is available."
        ),
    )
    headers: Dict[str, str] = Field(
        default=None,
        description=(
            "Additional headers to send to the server. By default only the"
            " authorization and user-agent headers are sent. Values in this dictionary"
            " will override the default values."
        ),
    )
    cookies: Dict[str, str] = Field(
        default=None, description="Additional cookies to send to the server."
    )
    task: Optional[str] = Field(
        default=None,
        description=(
            "Optional task to pick Hugging Face's recommended model, used when"
            " model_name is left as default of None."
        ),
    )
    _sync_client: "InferenceClient" = PrivateAttr()
    _async_client: "AsyncInferenceClient" = PrivateAttr()
    _get_model_info: "Callable[..., ModelInfo]" = PrivateAttr()

    def _get_inference_client_kwargs(self) -> Dict[str, Any]:
        """Extract the Hugging Face InferenceClient construction parameters."""
        return {
            "model": self.model_name,
            "token": self.token,
            "timeout": self.timeout,
            "headers": self.headers,
            "cookies": self.cookies,
        }

    def __init__(self, **kwargs: Any) -> None:
        """
        Initialize.

        Args:
            kwargs: See the class-level Fields.
        """
        if kwargs.get("model_name") is None:
            task = kwargs.get("task", "")
            # NOTE: task being None or empty string leads to ValueError,
            # which ensures model is present
            kwargs["model_name"] = InferenceClient.get_recommended_model(task=task)
            logger.debug(
                f"Using Hugging Face's recommended model {kwargs['model_name']}"
                f" given task {task}."
            )
            print(kwargs["model_name"], flush=True)
        super().__init__(**kwargs)  # Populate pydantic Fields
        self._sync_client = InferenceClient(**self._get_inference_client_kwargs())
        self._async_client = AsyncInferenceClient(**self._get_inference_client_kwargs())
        self._get_model_info = model_info

    def validate_supported(self, task: str) -> None:
        """
        Confirm the contained model_name is deployed on the Inference API service.

        Args:
            task: Hugging Face task to check within. A list of all tasks can be
                found here: https://huggingface.co/tasks
        """
        all_models = self._sync_client.list_deployed_models(frameworks="all")
        try:
            if self.model_name not in all_models[task]:
                raise ValueError(
                    "The Inference API service doesn't have the model"
                    f" {self.model_name!r} deployed."
                )
        except KeyError as exc:
            raise KeyError(
                f"Input task {task!r} not in possible tasks {list(all_models.keys())}."
            ) from exc

    def get_model_info(self, **kwargs: Any) -> "ModelInfo":
        """Get metadata on the current model from Hugging Face."""
        return self._get_model_info(self.model_name, **kwargs)

    @classmethod
    def class_name(cls) -> str:
        return "HuggingFaceInferenceAPIEmbedding"

    async def _async_embed_single(self, text: str) -> Embedding:
        embedding = await self._async_client.feature_extraction(text)
        if len(embedding.shape) == 1:
            return embedding.tolist()
        embedding = embedding.squeeze(axis=0)
        if len(embedding.shape) == 1:  # Some models pool internally
            return embedding.tolist()
        try:
            return self.pooling(embedding).tolist()  # type: ignore[misc]
        except TypeError as exc:
            raise ValueError(
                f"Pooling is required for {self.model_name} because it returned"
                " a > 1-D value, please specify pooling as not None."
            ) from exc

    async def _async_embed_bulk(self, texts: Sequence[str]) -> List[Embedding]:
        """
        Embed a sequence of text, in parallel and asynchronously.

        NOTE: this uses an externally created asyncio event loop.
        """
        tasks = [self._async_embed_single(text) for text in texts]
        return await asyncio.gather(*tasks)

    def _get_query_embedding(self, query: str) -> Embedding:
        """
        Embed the input query synchronously.

        NOTE: a new asyncio event loop is created internally for this.
        """
        return asyncio.run(self._aget_query_embedding(query))

    def _get_text_embedding(self, text: str) -> Embedding:
        """
        Embed the text query synchronously.

        NOTE: a new asyncio event loop is created internally for this.
        """
        return asyncio.run(self._aget_text_embedding(text))

    def _get_text_embeddings(self, texts: List[str]) -> List[Embedding]:
        """
        Embed the input sequence of text synchronously and in parallel.

        NOTE: a new asyncio event loop is created internally for this.
        """
        loop = asyncio.new_event_loop()
        try:
            tasks = [
                loop.create_task(self._aget_text_embedding(text)) for text in texts
            ]
            loop.run_until_complete(asyncio.wait(tasks))
        finally:
            loop.close()
        return [task.result() for task in tasks]

    async def _aget_query_embedding(self, query: str) -> Embedding:
        return await self._async_embed_single(
            text=format_query(query, self.model_name, self.query_instruction)
        )

    async def _aget_text_embedding(self, text: str) -> Embedding:
        return await self._async_embed_single(
            text=format_text(text, self.model_name, self.text_instruction)
        )

    async def _aget_text_embeddings(self, texts: List[str]) -> List[Embedding]:
        return await self._async_embed_bulk(
            texts=[
                format_text(text, self.model_name, self.text_instruction)
                for text in texts
            ]
        )

validate_supported #

validate_supported(task: str) -> None

Confirm the contained model_name is deployed on the Inference API service.

Parameters:

Name Type Description Default
task str

Hugging Face task to check within. A list of all tasks can be found here: https://huggingface.co/tasks

required
Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
def validate_supported(self, task: str) -> None:
    """
    Confirm the contained model_name is deployed on the Inference API service.

    Args:
        task: Hugging Face task to check within. A list of all tasks can be
            found here: https://huggingface.co/tasks
    """
    all_models = self._sync_client.list_deployed_models(frameworks="all")
    try:
        if self.model_name not in all_models[task]:
            raise ValueError(
                "The Inference API service doesn't have the model"
                f" {self.model_name!r} deployed."
            )
    except KeyError as exc:
        raise KeyError(
            f"Input task {task!r} not in possible tasks {list(all_models.keys())}."
        ) from exc

get_model_info #

get_model_info(**kwargs: Any) -> ModelInfo

Get metadata on the current model from Hugging Face.

Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
458
459
460
def get_model_info(self, **kwargs: Any) -> "ModelInfo":
    """Get metadata on the current model from Hugging Face."""
    return self._get_model_info(self.model_name, **kwargs)