Index
ChatResponseMode #
Bases: str
, Enum
Flag toggling waiting/streaming in Agent._chat
.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
43 44 45 46 47 |
|
AgentChatResponse
dataclass
#
Agent chat response.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response
|
str
|
|
''
|
sources
|
List[ToolOutput]
|
|
[]
|
source_nodes
|
List[NodeWithScore]
|
|
[]
|
is_dummy_stream
|
bool
|
|
False
|
metadata
|
Dict[str, Any] | None
|
|
None
|
Source code in llama-index-core/llama_index/core/chat_engine/types.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
response_gen
property
#
response_gen: Generator[str, None, None]
Used for fake streaming, i.e. with tool outputs.
async_response_gen
async
#
async_response_gen() -> AsyncGenerator[str, None]
Used for fake streaming, i.e. with tool outputs.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
85 86 87 88 89 90 91 92 93 94 95 |
|
StreamingAgentChatResponse
dataclass
#
Streaming chat response to user and writing to chat history.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response
|
str
|
|
''
|
sources
|
List[ToolOutput]
|
|
[]
|
chat_stream
|
Generator[ChatResponse, None, None] | None
|
|
None
|
achat_stream
|
AsyncGenerator[ChatResponse, None] | None
|
|
None
|
source_nodes
|
List[NodeWithScore]
|
|
[]
|
unformatted_response
|
str
|
|
''
|
queue
|
Queue
|
|
<queue.Queue object at 0x7f66155e0b60>
|
aqueue
|
Queue | None
|
|
None
|
is_function
|
bool | None
|
|
None
|
new_item_event
|
Event | None
|
|
None
|
is_function_false_event
|
Event | None
|
|
None
|
is_function_not_none_thread_event
|
Event
|
|
<threading.Event at 0x7f66155e0f20: unset>
|
is_writing_to_memory
|
bool
|
|
True
|
exception
|
Exception | None
|
|
None
|
Source code in llama-index-core/llama_index/core/chat_engine/types.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
BaseChatEngine #
Bases: DispatcherSpanMixin
, ABC
Base Chat Engine.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
reset
abstractmethod
#
reset() -> None
Reset conversation state.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
338 339 340 |
|
chat
abstractmethod
#
chat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> AGENT_CHAT_RESPONSE_TYPE
Main chat interface.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
342 343 344 345 346 |
|
stream_chat
abstractmethod
#
stream_chat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> StreamingAgentChatResponse
Stream chat interface.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
348 349 350 351 352 |
|
achat
abstractmethod
async
#
achat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> AGENT_CHAT_RESPONSE_TYPE
Async version of main chat interface.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
354 355 356 357 358 |
|
astream_chat
abstractmethod
async
#
astream_chat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> StreamingAgentChatResponse
Async version of main chat interface.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
360 361 362 363 364 |
|
chat_repl #
chat_repl() -> None
Enter interactive chat REPL.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
366 367 368 369 370 371 372 373 374 375 |
|
streaming_chat_repl #
streaming_chat_repl() -> None
Enter interactive chat REPL with streaming responses.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
377 378 379 380 381 382 383 384 385 386 387 388 |
|
ChatMode #
Bases: str
, Enum
Chat Engine Modes.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
SIMPLE
class-attribute
instance-attribute
#
SIMPLE = 'simple'
Corresponds to SimpleChatEngine
.
Chat with LLM, without making use of a knowledge base.
CONDENSE_QUESTION
class-attribute
instance-attribute
#
CONDENSE_QUESTION = 'condense_question'
Corresponds to CondenseQuestionChatEngine
.
First generate a standalone question from conversation context and last message, then query the query engine for a response.
CONTEXT
class-attribute
instance-attribute
#
CONTEXT = 'context'
Corresponds to ContextChatEngine
.
First retrieve text from the index using the user's message, then use the context in the system prompt to generate a response.
CONDENSE_PLUS_CONTEXT
class-attribute
instance-attribute
#
CONDENSE_PLUS_CONTEXT = 'condense_plus_context'
Corresponds to CondensePlusContextChatEngine
.
First condense a conversation and latest user message to a standalone question. Then build a context for the standalone question from a retriever, Then pass the context along with prompt and user message to LLM to generate a response.
REACT
class-attribute
instance-attribute
#
REACT = 'react'
Corresponds to ReActAgent
.
Use a ReAct agent loop with query engine tools.
OPENAI
class-attribute
instance-attribute
#
OPENAI = 'openai'
Corresponds to OpenAIAgent
.
Use an OpenAI function calling agent loop.
NOTE: only works with OpenAI models that support function calling API.
BEST
class-attribute
instance-attribute
#
BEST = 'best'
Select the best chat engine based on the current LLM.
Corresponds to OpenAIAgent
if using an OpenAI model that supports
function calling API, otherwise, corresponds to ReActAgent
.
is_function #
is_function(message: ChatMessage) -> bool
Utility for ChatMessage responses from OpenAI models.
Source code in llama-index-core/llama_index/core/chat_engine/types.py
35 36 37 38 39 40 |
|