Skip to content

Retriever

Retriever tool.

RetrieverTool #

Bases: AsyncBaseTool

Retriever tool.

A tool making use of a retriever.

Parameters:

Name Type Description Default
retriever BaseRetriever

A retriever.

required
metadata ToolMetadata

The associated metadata of the query engine.

required
node_postprocessors Optional[List[BaseNodePostprocessor]]

A list of node postprocessors.

None
Source code in llama-index-core/llama_index/core/tools/retriever_tool.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
class RetrieverTool(AsyncBaseTool):
    """Retriever tool.

    A tool making use of a retriever.

    Args:
        retriever (BaseRetriever): A retriever.
        metadata (ToolMetadata): The associated metadata of the query engine.
        node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of
            node postprocessors.
    """

    def __init__(
        self,
        retriever: BaseRetriever,
        metadata: ToolMetadata,
        node_postprocessors: Optional[List[BaseNodePostprocessor]] = None,
    ) -> None:
        self._retriever = retriever
        self._metadata = metadata
        self._node_postprocessors = node_postprocessors or []

    @classmethod
    def from_defaults(
        cls,
        retriever: BaseRetriever,
        node_postprocessors: Optional[List[BaseNodePostprocessor]] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
    ) -> "RetrieverTool":
        name = name or DEFAULT_NAME
        description = description or DEFAULT_DESCRIPTION

        metadata = ToolMetadata(name=name, description=description)
        return cls(
            retriever=retriever,
            metadata=metadata,
            node_postprocessors=node_postprocessors,
        )

    @property
    def retriever(self) -> BaseRetriever:
        return self._retriever

    @property
    def metadata(self) -> ToolMetadata:
        return self._metadata

    def call(self, *args: Any, **kwargs: Any) -> ToolOutput:
        query_str = ""
        if args is not None:
            query_str += ", ".join([str(arg) for arg in args]) + "\n"
        if kwargs is not None:
            query_str += (
                ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n"
            )
        if query_str == "":
            raise ValueError("Cannot call query engine without inputs")

        docs = self._retriever.retrieve(query_str)
        docs = self._apply_node_postprocessors(docs, QueryBundle(query_str))
        content = ""
        for doc in docs:
            node_copy = doc.node.model_copy()
            node_copy.text_template = "{metadata_str}\n{content}"
            node_copy.metadata_template = "{key} = {value}"
            content += node_copy.get_content(MetadataMode.LLM) + "\n\n"
        return ToolOutput(
            content=content,
            tool_name=self.metadata.name,
            raw_input={"input": input},
            raw_output=docs,
        )

    async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput:
        query_str = ""
        if args is not None:
            query_str += ", ".join([str(arg) for arg in args]) + "\n"
        if kwargs is not None:
            query_str += (
                ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n"
            )
        if query_str == "":
            raise ValueError("Cannot call query engine without inputs")
        docs = await self._retriever.aretrieve(query_str)
        content = ""
        docs = self._apply_node_postprocessors(docs, QueryBundle(query_str))
        for doc in docs:
            node_copy = doc.node.model_copy()
            node_copy.text_template = "{metadata_str}\n{content}"
            node_copy.metadata_template = "{key} = {value}"
            content += node_copy.get_content(MetadataMode.LLM) + "\n\n"
        return ToolOutput(
            content=content,
            tool_name=self.metadata.name,
            raw_input={"input": input},
            raw_output=docs,
        )

    def as_langchain_tool(self) -> "LlamaIndexTool":
        raise NotImplementedError("`as_langchain_tool` not implemented here.")

    def _apply_node_postprocessors(
        self, nodes: List[NodeWithScore], query_bundle: QueryBundle
    ) -> List[NodeWithScore]:
        for node_postprocessor in self._node_postprocessors:
            nodes = node_postprocessor.postprocess_nodes(
                nodes, query_bundle=query_bundle
            )
        return nodes