Skip to content

Qdrant

QdrantVectorStore #

Bases: BasePydanticVectorStore

Qdrant Vector Store.

In this vector store, embeddings and docs are stored within a Qdrant collection.

During query time, the index uses Qdrant to query for the top k most similar nodes.

Parameters:

Name Type Description Default
collection_name str

(str): name of the Qdrant collection

required
client Optional[Any]

QdrantClient instance from qdrant-client package

None
aclient Optional[Any]

AsyncQdrantClient instance from qdrant-client package

None
url Optional[str]

url of the Qdrant instance

None
api_key Optional[str]

API key for authenticating with Qdrant

None
batch_size int

number of points to upload in a single request to Qdrant. Defaults to 64

64
parallel int

number of parallel processes to use during upload. Defaults to 1

1
max_retries int

maximum number of retries in case of a failure. Defaults to 3

3
client_kwargs Optional[dict]

additional kwargs for QdrantClient and AsyncQdrantClient

None
enable_hybrid bool

whether to enable hybrid search using dense and sparse vectors

False
fastembed_sparse_model Optional[str]

name of the FastEmbed sparse model to use, if any

None
sparse_doc_fn Optional[SparseEncoderCallable]

function to encode sparse vectors

None
sparse_query_fn Optional[SparseEncoderCallable]

function to encode sparse queries

None
hybrid_fusion_fn Optional[HybridFusionCallable]

function to fuse hybrid search results

None
index_doc_id bool

whether to create a payload index for the document ID. Defaults to True

True

Examples:

pip install llama-index-vector-stores-qdrant

import qdrant_client
from llama_index.vector_stores.qdrant import QdrantVectorStore

client = qdrant_client.QdrantClient()

vector_store = QdrantVectorStore(
    collection_name="example_collection", client=client
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
class QdrantVectorStore(BasePydanticVectorStore):
    """
    Qdrant Vector Store.

    In this vector store, embeddings and docs are stored within a
    Qdrant collection.

    During query time, the index uses Qdrant to query for the top
    k most similar nodes.

    Args:
        collection_name: (str): name of the Qdrant collection
        client (Optional[Any]): QdrantClient instance from `qdrant-client` package
        aclient (Optional[Any]): AsyncQdrantClient instance from `qdrant-client` package
        url (Optional[str]): url of the Qdrant instance
        api_key (Optional[str]): API key for authenticating with Qdrant
        batch_size (int): number of points to upload in a single request to Qdrant. Defaults to 64
        parallel (int): number of parallel processes to use during upload. Defaults to 1
        max_retries (int): maximum number of retries in case of a failure. Defaults to 3
        client_kwargs (Optional[dict]): additional kwargs for QdrantClient and AsyncQdrantClient
        enable_hybrid (bool): whether to enable hybrid search using dense and sparse vectors
        fastembed_sparse_model (Optional[str]): name of the FastEmbed sparse model to use, if any
        sparse_doc_fn (Optional[SparseEncoderCallable]): function to encode sparse vectors
        sparse_query_fn (Optional[SparseEncoderCallable]): function to encode sparse queries
        hybrid_fusion_fn (Optional[HybridFusionCallable]): function to fuse hybrid search results
        index_doc_id (bool): whether to create a payload index for the document ID. Defaults to True

    Examples:
        `pip install llama-index-vector-stores-qdrant`

        ```python
        import qdrant_client
        from llama_index.vector_stores.qdrant import QdrantVectorStore

        client = qdrant_client.QdrantClient()

        vector_store = QdrantVectorStore(
            collection_name="example_collection", client=client
        )
        ```
    """

    stores_text: bool = True
    flat_metadata: bool = False

    collection_name: str
    url: Optional[str]
    api_key: Optional[str]
    batch_size: int
    parallel: int
    max_retries: int
    client_kwargs: dict = Field(default_factory=dict)
    enable_hybrid: bool
    index_doc_id: bool
    fastembed_sparse_model: Optional[str]

    _client: qdrant_client.QdrantClient = PrivateAttr()
    _aclient: qdrant_client.AsyncQdrantClient = PrivateAttr()
    _collection_initialized: bool = PrivateAttr()
    _sparse_doc_fn: Optional[SparseEncoderCallable] = PrivateAttr()
    _sparse_query_fn: Optional[SparseEncoderCallable] = PrivateAttr()
    _hybrid_fusion_fn: Optional[HybridFusionCallable] = PrivateAttr()
    _dense_config: Optional[rest.VectorParams] = PrivateAttr()
    _sparse_config: Optional[rest.SparseVectorParams] = PrivateAttr()
    _quantization_config: Optional[QuantizationConfig] = PrivateAttr()

    def __init__(
        self,
        collection_name: str,
        client: Optional[Any] = None,
        aclient: Optional[Any] = None,
        url: Optional[str] = None,
        api_key: Optional[str] = None,
        batch_size: int = 64,
        parallel: int = 1,
        max_retries: int = 3,
        client_kwargs: Optional[dict] = None,
        dense_config: Optional[rest.VectorParams] = None,
        sparse_config: Optional[rest.SparseVectorParams] = None,
        quantization_config: Optional[QuantizationConfig] = None,
        enable_hybrid: bool = False,
        fastembed_sparse_model: Optional[str] = None,
        sparse_doc_fn: Optional[SparseEncoderCallable] = None,
        sparse_query_fn: Optional[SparseEncoderCallable] = None,
        hybrid_fusion_fn: Optional[HybridFusionCallable] = None,
        index_doc_id: bool = True,
        **kwargs: Any,
    ) -> None:
        """Init params."""
        super().__init__(
            collection_name=collection_name,
            url=url,
            api_key=api_key,
            batch_size=batch_size,
            parallel=parallel,
            max_retries=max_retries,
            client_kwargs=client_kwargs or {},
            enable_hybrid=enable_hybrid,
            index_doc_id=index_doc_id,
            fastembed_sparse_model=fastembed_sparse_model,
        )

        if (
            client is None
            and aclient is None
            and (url is None or api_key is None or collection_name is None)
        ):
            raise ValueError(
                "Must provide either a QdrantClient instance or a url and api_key."
            )

        if client is None and aclient is None:
            client_kwargs = client_kwargs or {}
            self._client = qdrant_client.QdrantClient(
                url=url, api_key=api_key, **client_kwargs
            )
            self._aclient = qdrant_client.AsyncQdrantClient(
                url=url, api_key=api_key, **client_kwargs
            )
        else:
            if client is not None and aclient is not None:
                logger.warning(
                    "Both client and aclient are provided. If using `:memory:` "
                    "mode, the data between clients is not synced."
                )

            self._client = client
            self._aclient = aclient

        if self._client is not None:
            self._collection_initialized = self._collection_exists(collection_name)
        else:
            #  need to do lazy init for async clients
            self._collection_initialized = False

        # setup hybrid search if enabled
        if enable_hybrid or fastembed_sparse_model is not None:
            enable_hybrid = True
            self._sparse_doc_fn = sparse_doc_fn or self.get_default_sparse_doc_encoder(
                collection_name, fastembed_sparse_model=fastembed_sparse_model
            )
            self._sparse_query_fn = (
                sparse_query_fn
                or self.get_default_sparse_query_encoder(
                    collection_name, fastembed_sparse_model=fastembed_sparse_model
                )
            )
            self._hybrid_fusion_fn = hybrid_fusion_fn or cast(
                HybridFusionCallable, relative_score_fusion
            )

        self._sparse_config = sparse_config
        self._dense_config = dense_config
        self._quantization_config = quantization_config

    @classmethod
    def class_name(cls) -> str:
        return "QdrantVectorStore"

    def set_query_functions(
        self,
        sparse_doc_fn: Optional[SparseEncoderCallable] = None,
        sparse_query_fn: Optional[SparseEncoderCallable] = None,
        hybrid_fusion_fn: Optional[HybridFusionCallable] = None,
    ):
        self._sparse_doc_fn = sparse_doc_fn
        self._sparse_query_fn = sparse_query_fn
        self._hybrid_fusion_fn = hybrid_fusion_fn

    def _build_points(
        self, nodes: List[BaseNode], sparse_vector_name: str
    ) -> Tuple[List[Any], List[str]]:
        ids = []
        points = []
        for node_batch in iter_batch(nodes, self.batch_size):
            node_ids = []
            vectors: List[Any] = []
            sparse_vectors: List[List[float]] = []
            sparse_indices: List[List[int]] = []
            payloads = []

            if self.enable_hybrid and self._sparse_doc_fn is not None:
                sparse_indices, sparse_vectors = self._sparse_doc_fn(
                    [
                        node.get_content(metadata_mode=MetadataMode.EMBED)
                        for node in node_batch
                    ],
                )

            for i, node in enumerate(node_batch):
                assert isinstance(node, BaseNode)
                node_ids.append(node.node_id)

                if self.enable_hybrid:
                    if (
                        len(sparse_vectors) > 0
                        and len(sparse_indices) > 0
                        and len(sparse_vectors) == len(sparse_indices)
                    ):
                        vectors.append(
                            {
                                # Dynamically switch between the old and new sparse vector name
                                sparse_vector_name: rest.SparseVector(
                                    indices=sparse_indices[i],
                                    values=sparse_vectors[i],
                                ),
                                DENSE_VECTOR_NAME: node.get_embedding(),
                            }
                        )
                    else:
                        vectors.append(
                            {
                                DENSE_VECTOR_NAME: node.get_embedding(),
                            }
                        )
                else:
                    vectors.append(node.get_embedding())

                metadata = node_to_metadata_dict(
                    node, remove_text=False, flat_metadata=self.flat_metadata
                )

                payloads.append(metadata)

            points.extend(
                [
                    rest.PointStruct(id=node_id, payload=payload, vector=vector)
                    for node_id, payload, vector in zip(node_ids, payloads, vectors)
                ]
            )

            ids.extend(node_ids)

        return points, ids

    def get_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        limit: Optional[int] = None,
    ) -> List[BaseNode]:
        """
        Get nodes from the index.

        Args:
            node_ids (Optional[List[str]]): List of node IDs to retrieve.
            filters (Optional[MetadataFilters]): Metadata filters to apply.

        Returns:
            List[BaseNode]: List of nodes retrieved from the index.
        """
        should = []
        if node_ids is not None:
            should = [
                HasIdCondition(
                    has_id=node_ids,
                )
            ]
            # If we pass a node_ids list,
            # we can limit the search to only those nodes
            # or less if limit is provided
            limit = len(node_ids) if limit is None else min(len(node_ids), limit)

        if filters is not None:
            filter = self._build_subfilter(filters)
            if filter.should is None:
                filter.should = should
            else:
                filter.should.extend(should)
        else:
            filter = Filter(should=should)

        # If we pass an empty list, Qdrant will not return any results
        filter.must = filter.must if filter.must and len(filter.must) > 0 else None
        filter.should = (
            filter.should if filter.should and len(filter.should) > 0 else None
        )
        filter.must_not = (
            filter.must_not if filter.must_not and len(filter.must_not) > 0 else None
        )

        response = self._client.scroll(
            collection_name=self.collection_name,
            limit=limit or 9999,
            scroll_filter=filter,
        )

        return self.parse_to_query_result(response[0]).nodes

    async def aget_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        limit: Optional[int] = None,
    ) -> List[BaseNode]:
        """
        Asynchronous method to get nodes from the index.

        Args:
            node_ids (Optional[List[str]]): List of node IDs to retrieve.
            filters (Optional[MetadataFilters]): Metadata filters to apply.

        Returns:
            List[BaseNode]: List of nodes retrieved from the index.
        """
        should = []
        if node_ids is not None:
            should = [
                HasIdCondition(
                    has_id=node_ids,
                )
            ]
            # If we pass a node_ids list,
            # we can limit the search to only those nodes
            # or less if limit is provided
            limit = len(node_ids) if limit is None else min(len(node_ids), limit)

        if filters is not None:
            filter = self._build_subfilter(filters)
            if filter.should is None:
                filter.should = should
            else:
                filter.should.extend(should)
        else:
            filter = Filter(should=should)

        response = await self._aclient.scroll(
            collection_name=self.collection_name,
            limit=limit or 9999,
            scroll_filter=filter,
        )

        return self.parse_to_query_result(response[0]).nodes

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """
        Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings

        """
        if len(nodes) > 0 and not self._collection_initialized:
            self._create_collection(
                collection_name=self.collection_name,
                vector_size=len(nodes[0].get_embedding()),
            )

        sparse_vector_name = self.sparse_vector_name()
        points, ids = self._build_points(nodes, sparse_vector_name)

        self._client.upload_points(
            collection_name=self.collection_name,
            points=points,
            batch_size=self.batch_size,
            parallel=self.parallel,
            max_retries=self.max_retries,
            wait=True,
        )

        return ids

    async def async_add(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
        """
        Asynchronous method to add nodes to Qdrant index.

        Args:
            nodes: List[BaseNode]: List of nodes with embeddings.

        Returns:
            List of node IDs that were added to the index.

        Raises:
            ValueError: If trying to using async methods without aclient
        """
        from qdrant_client.http.exceptions import UnexpectedResponse

        collection_initialized = await self._acollection_exists(self.collection_name)

        if len(nodes) > 0 and not collection_initialized:
            await self._acreate_collection(
                collection_name=self.collection_name,
                vector_size=len(nodes[0].get_embedding()),
            )

        sparse_vector_name = await self.asparse_vector_name()
        points, ids = self._build_points(nodes, sparse_vector_name)

        for batch in iter_batch(points, self.batch_size):
            retries = 0
            while retries < self.max_retries:
                try:
                    await self._aclient.upsert(
                        collection_name=self.collection_name,
                        points=batch,
                    )
                    break
                except (RpcError, UnexpectedResponse) as exc:
                    retries += 1
                    if retries >= self.max_retries:
                        raise exc  # noqa: TRY201

        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        self._client.delete(
            collection_name=self.collection_name,
            points_selector=rest.Filter(
                must=[
                    rest.FieldCondition(
                        key=DOCUMENT_ID_KEY, match=rest.MatchValue(value=ref_doc_id)
                    )
                ]
            ),
        )

    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Asynchronous method to delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        await self._aclient.delete(
            collection_name=self.collection_name,
            points_selector=rest.Filter(
                must=[
                    rest.FieldCondition(
                        key=DOCUMENT_ID_KEY, match=rest.MatchValue(value=ref_doc_id)
                    )
                ]
            ),
        )

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Delete nodes using with node_ids.

        Args:
            node_ids (Optional[List[str]): List of node IDs to delete.
            filters (Optional[MetadataFilters]): Metadata filters to apply.
        """
        should = []
        if node_ids is not None:
            should = [
                HasIdCondition(
                    has_id=node_ids,
                )
            ]

        if filters is not None:
            filter = self._build_subfilter(filters)
            if filter.should is None:
                filter.should = should
            else:
                filter.should.extend(should)
        else:
            filter = Filter(should=should)

        self._client.delete(
            collection_name=self.collection_name,
            points_selector=filter,
        )

    async def adelete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Asynchronous method to delete nodes using with node_ids.

        Args:
            node_ids (Optional[List[str]): List of node IDs to delete.
            filters (Optional[MetadataFilters]): Metadata filters to apply.
        """
        should = []
        if node_ids is not None:
            should = [
                HasIdCondition(
                    has_id=node_ids,
                )
            ]

        if filters is not None:
            filter = self._build_subfilter(filters)
            if filter.should is None:
                filter.should = should
            else:
                filter.should.extend(should)
        else:
            filter = Filter(should=should)

        await self._aclient.delete(
            collection_name=self.collection_name,
            points_selector=filter,
        )

    def clear(self) -> None:
        """
        Clear the index.
        """
        self._client.delete_collection(collection_name=self.collection_name)
        self._collection_initialized = False

    async def aclear(self) -> None:
        """
        Asynchronous method to clear the index.
        """
        await self._aclient.delete_collection(collection_name=self.collection_name)
        self._collection_initialized = False

    @property
    def client(self) -> Any:
        """Return the Qdrant client."""
        return self._client

    def _create_collection(self, collection_name: str, vector_size: int) -> None:
        """Create a Qdrant collection."""
        from qdrant_client.http import models as rest
        from qdrant_client.http.exceptions import UnexpectedResponse

        dense_config = self._dense_config or rest.VectorParams(
            size=vector_size,
            distance=rest.Distance.COSINE,
        )

        sparse_config = self._sparse_config or rest.SparseVectorParams(
            index=rest.SparseIndexParams(),
            modifier=(
                rest.Modifier.IDF
                if self.fastembed_sparse_model in IDF_EMBEDDING_MODELS
                else None
            ),
        )

        try:
            if self.enable_hybrid:
                self._client.create_collection(
                    collection_name=collection_name,
                    vectors_config={
                        DENSE_VECTOR_NAME: dense_config,
                    },
                    # Newly created collection will have the new sparse vector name
                    sparse_vectors_config={SPARSE_VECTOR_NAME: sparse_config},
                    quantization_config=self._quantization_config,
                )
            else:
                self._client.create_collection(
                    collection_name=collection_name,
                    vectors_config=dense_config,
                    quantization_config=self._quantization_config,
                )

            # To improve search performance Qdrant recommends setting up
            # a payload index for fields used in filters.
            # https://qdrant.tech/documentation/concepts/indexing
            if self.index_doc_id:
                self._client.create_payload_index(
                    collection_name=collection_name,
                    field_name=DOCUMENT_ID_KEY,
                    field_schema=rest.PayloadSchemaType.KEYWORD,
                )
        except (RpcError, ValueError, UnexpectedResponse) as exc:
            if "already exists" not in str(exc):
                raise exc  # noqa: TRY201
            logger.warning(
                "Collection %s already exists, skipping collection creation.",
                collection_name,
            )
        self._collection_initialized = True

    async def _acreate_collection(self, collection_name: str, vector_size: int) -> None:
        """Asynchronous method to create a Qdrant collection."""
        from qdrant_client.http import models as rest
        from qdrant_client.http.exceptions import UnexpectedResponse

        dense_config = self._dense_config or rest.VectorParams(
            size=vector_size,
            distance=rest.Distance.COSINE,
        )

        sparse_config = self._sparse_config or rest.SparseVectorParams(
            index=rest.SparseIndexParams(),
            modifier=(
                rest.Modifier.IDF
                if self.fastembed_sparse_model in IDF_EMBEDDING_MODELS
                else None
            ),
        )

        try:
            if self.enable_hybrid:
                await self._aclient.create_collection(
                    collection_name=collection_name,
                    vectors_config={DENSE_VECTOR_NAME: dense_config},
                    sparse_vectors_config={SPARSE_VECTOR_NAME: sparse_config},
                    quantization_config=self._quantization_config,
                )
            else:
                await self._aclient.create_collection(
                    collection_name=collection_name,
                    vectors_config=dense_config,
                    quantization_config=self._quantization_config,
                )
            # To improve search performance Qdrant recommends setting up
            # a payload index for fields used in filters.
            # https://qdrant.tech/documentation/concepts/indexing
            if self.index_doc_id:
                await self._aclient.create_payload_index(
                    collection_name=collection_name,
                    field_name=DOCUMENT_ID_KEY,
                    field_schema=rest.PayloadSchemaType.KEYWORD,
                )
        except (RpcError, ValueError, UnexpectedResponse) as exc:
            if "already exists" not in str(exc):
                raise exc  # noqa: TRY201
            logger.warning(
                "Collection %s already exists, skipping collection creation.",
                collection_name,
            )
        self._collection_initialized = True

    def _collection_exists(self, collection_name: str) -> bool:
        """Check if a collection exists."""
        return self._client.collection_exists(collection_name)

    async def _acollection_exists(self, collection_name: str) -> bool:
        """Asynchronous method to check if a collection exists."""
        return await self._aclient.collection_exists(collection_name)

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): query
        """
        query_embedding = cast(List[float], query.query_embedding)
        #  NOTE: users can pass in qdrant_filters (nested/complicated filters) to override the default MetadataFilters
        qdrant_filters = kwargs.get("qdrant_filters")
        if qdrant_filters is not None:
            query_filter = qdrant_filters
        else:
            query_filter = cast(Filter, self._build_query_filter(query))

        if query.mode == VectorStoreQueryMode.HYBRID and not self.enable_hybrid:
            raise ValueError(
                "Hybrid search is not enabled. Please build the query with "
                "`enable_hybrid=True` in the constructor."
            )
        elif (
            query.mode == VectorStoreQueryMode.HYBRID
            and self.enable_hybrid
            and self._sparse_query_fn is not None
            and query.query_str is not None
        ):
            sparse_indices, sparse_embedding = self._sparse_query_fn(
                [query.query_str],
            )
            sparse_top_k = query.sparse_top_k or query.similarity_top_k

            sparse_response = self._client.search_batch(
                collection_name=self.collection_name,
                requests=[
                    rest.SearchRequest(
                        vector=rest.NamedVector(
                            name=DENSE_VECTOR_NAME,
                            vector=query_embedding,
                        ),
                        limit=query.similarity_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                    rest.SearchRequest(
                        vector=rest.NamedSparseVector(
                            # Dynamically switch between the old and new sparse vector name
                            name=self.sparse_vector_name(),
                            vector=rest.SparseVector(
                                indices=sparse_indices[0],
                                values=sparse_embedding[0],
                            ),
                        ),
                        limit=sparse_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                ],
            )

            # sanity check
            assert len(sparse_response) == 2
            assert self._hybrid_fusion_fn is not None

            # flatten the response
            return self._hybrid_fusion_fn(
                self.parse_to_query_result(sparse_response[0]),
                self.parse_to_query_result(sparse_response[1]),
                # NOTE: only for hybrid search (0 for sparse search, 1 for dense search)
                alpha=query.alpha or 0.5,
                # NOTE: use hybrid_top_k if provided, otherwise use similarity_top_k
                top_k=query.hybrid_top_k or query.similarity_top_k,
            )
        elif (
            query.mode == VectorStoreQueryMode.SPARSE
            and self.enable_hybrid
            and self._sparse_query_fn is not None
            and query.query_str is not None
        ):
            sparse_indices, sparse_embedding = self._sparse_query_fn(
                [query.query_str],
            )
            sparse_top_k = query.sparse_top_k or query.similarity_top_k

            sparse_response = self._client.search_batch(
                collection_name=self.collection_name,
                requests=[
                    rest.SearchRequest(
                        vector=rest.NamedSparseVector(
                            # Dynamically switch between the old and new sparse vector name
                            name=self.sparse_vector_name(),
                            vector=rest.SparseVector(
                                indices=sparse_indices[0],
                                values=sparse_embedding[0],
                            ),
                        ),
                        limit=sparse_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                ],
            )
            return self.parse_to_query_result(sparse_response[0])

        elif self.enable_hybrid:
            # search for dense vectors only
            response = self._client.search_batch(
                collection_name=self.collection_name,
                requests=[
                    rest.SearchRequest(
                        vector=rest.NamedVector(
                            name=DENSE_VECTOR_NAME,
                            vector=query_embedding,
                        ),
                        limit=query.similarity_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                ],
            )

            return self.parse_to_query_result(response[0])
        else:
            response = self._client.search(
                collection_name=self.collection_name,
                query_vector=query_embedding,
                limit=query.similarity_top_k,
                query_filter=query_filter,
            )
            return self.parse_to_query_result(response)

    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Asynchronous method to query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): query
        """
        query_embedding = cast(List[float], query.query_embedding)

        #  NOTE: users can pass in qdrant_filters (nested/complicated filters) to override the default MetadataFilters
        qdrant_filters = kwargs.get("qdrant_filters")
        if qdrant_filters is not None:
            query_filter = qdrant_filters
        else:
            # build metadata filters
            query_filter = cast(Filter, self._build_query_filter(query))

        if query.mode == VectorStoreQueryMode.HYBRID and not self.enable_hybrid:
            raise ValueError(
                "Hybrid search is not enabled. Please build the query with "
                "`enable_hybrid=True` in the constructor."
            )
        elif (
            query.mode == VectorStoreQueryMode.HYBRID
            and self.enable_hybrid
            and self._sparse_query_fn is not None
            and query.query_str is not None
        ):
            sparse_indices, sparse_embedding = self._sparse_query_fn(
                [query.query_str],
            )
            sparse_top_k = query.sparse_top_k or query.similarity_top_k

            sparse_response = await self._aclient.search_batch(
                collection_name=self.collection_name,
                requests=[
                    rest.SearchRequest(
                        vector=rest.NamedVector(
                            name=DENSE_VECTOR_NAME,
                            vector=query_embedding,
                        ),
                        limit=query.similarity_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                    rest.SearchRequest(
                        vector=rest.NamedSparseVector(
                            # Dynamically switch between the old and new sparse vector name
                            name=await self.asparse_vector_name(),
                            vector=rest.SparseVector(
                                indices=sparse_indices[0],
                                values=sparse_embedding[0],
                            ),
                        ),
                        limit=sparse_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                ],
            )

            # sanity check
            assert len(sparse_response) == 2
            assert self._hybrid_fusion_fn is not None

            # flatten the response
            return self._hybrid_fusion_fn(
                self.parse_to_query_result(sparse_response[0]),
                self.parse_to_query_result(sparse_response[1]),
                alpha=query.alpha or 0.5,
                # NOTE: use hybrid_top_k if provided, otherwise use similarity_top_k
                top_k=query.hybrid_top_k or query.similarity_top_k,
            )
        elif (
            query.mode == VectorStoreQueryMode.SPARSE
            and self.enable_hybrid
            and self._sparse_query_fn is not None
            and query.query_str is not None
        ):
            sparse_indices, sparse_embedding = self._sparse_query_fn(
                [query.query_str],
            )
            sparse_top_k = query.sparse_top_k or query.similarity_top_k

            sparse_response = await self._aclient.search_batch(
                collection_name=self.collection_name,
                requests=[
                    rest.SearchRequest(
                        vector=rest.NamedSparseVector(
                            # Dynamically switch between the old and new sparse vector name
                            name=await self.asparse_vector_name(),
                            vector=rest.SparseVector(
                                indices=sparse_indices[0],
                                values=sparse_embedding[0],
                            ),
                        ),
                        limit=sparse_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                ],
            )
            return self.parse_to_query_result(sparse_response[0])
        elif self.enable_hybrid:
            # search for dense vectors only
            response = await self._aclient.search_batch(
                collection_name=self.collection_name,
                requests=[
                    rest.SearchRequest(
                        vector=rest.NamedVector(
                            name=DENSE_VECTOR_NAME,
                            vector=query_embedding,
                        ),
                        limit=query.similarity_top_k,
                        filter=query_filter,
                        with_payload=True,
                    ),
                ],
            )

            return self.parse_to_query_result(response[0])
        else:
            response = await self._aclient.search(
                collection_name=self.collection_name,
                query_vector=query_embedding,
                limit=query.similarity_top_k,
                query_filter=query_filter,
            )

            return self.parse_to_query_result(response)

    def parse_to_query_result(self, response: List[Any]) -> VectorStoreQueryResult:
        """
        Convert vector store response to VectorStoreQueryResult.

        Args:
            response: List[Any]: List of results returned from the vector store.
        """
        nodes = []
        similarities = []
        ids = []

        for point in response:
            payload = cast(Payload, point.payload)
            try:
                node = metadata_dict_to_node(payload)
            except Exception:
                metadata, node_info, relationships = legacy_metadata_dict_to_node(
                    payload
                )

                node = TextNode(
                    id_=str(point.id),
                    text=payload.get("text"),
                    metadata=metadata,
                    start_char_idx=node_info.get("start", None),
                    end_char_idx=node_info.get("end", None),
                    relationships=relationships,
                )
            nodes.append(node)
            ids.append(str(point.id))
            try:
                similarities.append(point.score)
            except AttributeError:
                # certain requests do not return a score
                similarities.append(1.0)

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

    def _build_subfilter(self, filters: MetadataFilters) -> Filter:
        conditions = []
        for subfilter in filters.filters:
            # only for exact match
            if isinstance(subfilter, MetadataFilters) and len(subfilter.filters) > 0:
                conditions.append(self._build_subfilter(subfilter))
            elif not subfilter.operator or subfilter.operator == FilterOperator.EQ:
                if isinstance(subfilter.value, float):
                    conditions.append(
                        FieldCondition(
                            key=subfilter.key,
                            range=Range(
                                gte=subfilter.value,
                                lte=subfilter.value,
                            ),
                        )
                    )
                else:
                    conditions.append(
                        FieldCondition(
                            key=subfilter.key,
                            match=MatchValue(value=subfilter.value),
                        )
                    )
            elif subfilter.operator == FilterOperator.LT:
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        range=Range(lt=subfilter.value),
                    )
                )
            elif subfilter.operator == FilterOperator.GT:
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        range=Range(gt=subfilter.value),
                    )
                )
            elif subfilter.operator == FilterOperator.GTE:
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        range=Range(gte=subfilter.value),
                    )
                )
            elif subfilter.operator == FilterOperator.LTE:
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        range=Range(lte=subfilter.value),
                    )
                )
            elif subfilter.operator == FilterOperator.TEXT_MATCH:
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        match=MatchText(text=subfilter.value),
                    )
                )
            elif subfilter.operator == FilterOperator.NE:
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        match=MatchExcept(**{"except": [subfilter.value]}),
                    )
                )
            elif subfilter.operator == FilterOperator.IN:
                # match any of the values
                # https://qdrant.tech/documentation/concepts/filtering/#match-any
                if isinstance(subfilter.value, List):
                    values = [str(val) for val in subfilter.value]
                else:
                    values = str(subfilter.value).split(",")

                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        match=MatchAny(any=values),
                    )
                )
            elif subfilter.operator == FilterOperator.NIN:
                # match none of the values
                # https://qdrant.tech/documentation/concepts/filtering/#match-except
                if isinstance(subfilter.value, List):
                    values = [str(val) for val in subfilter.value]
                else:
                    values = str(subfilter.value).split(",")
                conditions.append(
                    FieldCondition(
                        key=subfilter.key,
                        match=MatchExcept(**{"except": values}),
                    )
                )
            elif subfilter.operator == FilterOperator.IS_EMPTY:
                # This condition will match all records where the field reports either does not exist, or has null or [] value.
                # https://qdrant.tech/documentation/concepts/filtering/#is-empty
                conditions.append(
                    IsEmptyCondition(is_empty=PayloadField(key=subfilter.key))
                )

        filter = Filter()
        if filters.condition == FilterCondition.AND:
            filter.must = conditions
        elif filters.condition == FilterCondition.OR:
            filter.should = conditions
        return filter

    def _build_query_filter(self, query: VectorStoreQuery) -> Optional[Any]:
        if not query.doc_ids and not query.query_str:
            return None

        must_conditions = []

        if query.doc_ids:
            must_conditions.append(
                FieldCondition(
                    key=DOCUMENT_ID_KEY,
                    match=MatchAny(any=query.doc_ids),
                )
            )

        # Point id is a “service” id, it is not stored in payload. There is ‘HasId’ condition to filter by point id
        # https://qdrant.tech/documentation/concepts/filtering/#has-id
        if query.node_ids:
            must_conditions.append(
                HasIdCondition(has_id=query.node_ids),
            )

        # Qdrant does not use the query.query_str property for the filtering. Full-text
        # filtering cannot handle longer queries and can effectively filter our all the
        # nodes. See: https://github.com/jerryjliu/llama_index/pull/1181

        if query.filters and query.filters.filters:
            must_conditions.append(self._build_subfilter(query.filters))

        return Filter(must=must_conditions)

    def use_old_sparse_encoder(self, collection_name: str) -> bool:
        collection_exists = self._collection_exists(collection_name)
        if collection_exists:
            cur_collection = self.client.get_collection(collection_name)
            return SPARSE_VECTOR_NAME_OLD in (
                cur_collection.config.params.sparse_vectors or {}
            )

        return False

    def sparse_vector_name(self) -> str:
        return (
            SPARSE_VECTOR_NAME_OLD
            if self.use_old_sparse_encoder(self.collection_name)
            else SPARSE_VECTOR_NAME
        )

    async def ause_old_sparse_encoder(self, collection_name: str) -> bool:
        collection_exists = await self._acollection_exists(collection_name)
        if collection_exists:
            cur_collection = await self._aclient.get_collection(collection_name)
            return SPARSE_VECTOR_NAME_OLD in (
                cur_collection.config.params.sparse_vectors or {}
            )

        return False

    async def asparse_vector_name(self) -> str:
        return (
            SPARSE_VECTOR_NAME_OLD
            if await self.ause_old_sparse_encoder(self.collection_name)
            else SPARSE_VECTOR_NAME
        )

    def get_default_sparse_doc_encoder(
        self, collection_name: str, fastembed_sparse_model: Optional[str] = None
    ) -> SparseEncoderCallable:
        if self.use_old_sparse_encoder(collection_name):
            return default_sparse_encoder("naver/efficient-splade-VI-BT-large-doc")

        if fastembed_sparse_model is not None:
            return fastembed_sparse_encoder(model_name=fastembed_sparse_model)

        return fastembed_sparse_encoder()

    def get_default_sparse_query_encoder(
        self, collection_name: str, fastembed_sparse_model: Optional[str] = None
    ) -> SparseEncoderCallable:
        if self.use_old_sparse_encoder(collection_name):
            return default_sparse_encoder("naver/efficient-splade-VI-BT-large-query")

        if fastembed_sparse_model is not None:
            return fastembed_sparse_encoder(model_name=fastembed_sparse_model)

        return fastembed_sparse_encoder()

client property #

client: Any

Return the Qdrant client.

get_nodes #

get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, limit: Optional[int] = None) -> List[BaseNode]

Get nodes from the index.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

List of node IDs to retrieve.

None
filters Optional[MetadataFilters]

Metadata filters to apply.

None

Returns:

Type Description
List[BaseNode]

List[BaseNode]: List of nodes retrieved from the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def get_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    limit: Optional[int] = None,
) -> List[BaseNode]:
    """
    Get nodes from the index.

    Args:
        node_ids (Optional[List[str]]): List of node IDs to retrieve.
        filters (Optional[MetadataFilters]): Metadata filters to apply.

    Returns:
        List[BaseNode]: List of nodes retrieved from the index.
    """
    should = []
    if node_ids is not None:
        should = [
            HasIdCondition(
                has_id=node_ids,
            )
        ]
        # If we pass a node_ids list,
        # we can limit the search to only those nodes
        # or less if limit is provided
        limit = len(node_ids) if limit is None else min(len(node_ids), limit)

    if filters is not None:
        filter = self._build_subfilter(filters)
        if filter.should is None:
            filter.should = should
        else:
            filter.should.extend(should)
    else:
        filter = Filter(should=should)

    # If we pass an empty list, Qdrant will not return any results
    filter.must = filter.must if filter.must and len(filter.must) > 0 else None
    filter.should = (
        filter.should if filter.should and len(filter.should) > 0 else None
    )
    filter.must_not = (
        filter.must_not if filter.must_not and len(filter.must_not) > 0 else None
    )

    response = self._client.scroll(
        collection_name=self.collection_name,
        limit=limit or 9999,
        scroll_filter=filter,
    )

    return self.parse_to_query_result(response[0]).nodes

aget_nodes async #

aget_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, limit: Optional[int] = None) -> List[BaseNode]

Asynchronous method to get nodes from the index.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

List of node IDs to retrieve.

None
filters Optional[MetadataFilters]

Metadata filters to apply.

None

Returns:

Type Description
List[BaseNode]

List[BaseNode]: List of nodes retrieved from the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
async def aget_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    limit: Optional[int] = None,
) -> List[BaseNode]:
    """
    Asynchronous method to get nodes from the index.

    Args:
        node_ids (Optional[List[str]]): List of node IDs to retrieve.
        filters (Optional[MetadataFilters]): Metadata filters to apply.

    Returns:
        List[BaseNode]: List of nodes retrieved from the index.
    """
    should = []
    if node_ids is not None:
        should = [
            HasIdCondition(
                has_id=node_ids,
            )
        ]
        # If we pass a node_ids list,
        # we can limit the search to only those nodes
        # or less if limit is provided
        limit = len(node_ids) if limit is None else min(len(node_ids), limit)

    if filters is not None:
        filter = self._build_subfilter(filters)
        if filter.should is None:
            filter.should = should
        else:
            filter.should.extend(should)
    else:
        filter = Filter(should=should)

    response = await self._aclient.scroll(
        collection_name=self.collection_name,
        limit=limit or 9999,
        scroll_filter=filter,
    )

    return self.parse_to_query_result(response[0]).nodes

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """
    Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings

    """
    if len(nodes) > 0 and not self._collection_initialized:
        self._create_collection(
            collection_name=self.collection_name,
            vector_size=len(nodes[0].get_embedding()),
        )

    sparse_vector_name = self.sparse_vector_name()
    points, ids = self._build_points(nodes, sparse_vector_name)

    self._client.upload_points(
        collection_name=self.collection_name,
        points=points,
        batch_size=self.batch_size,
        parallel=self.parallel,
        max_retries=self.max_retries,
        wait=True,
    )

    return ids

async_add async #

async_add(nodes: List[BaseNode], **kwargs: Any) -> List[str]

Asynchronous method to add nodes to Qdrant index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: List of nodes with embeddings.

required

Returns:

Type Description
List[str]

List of node IDs that were added to the index.

Raises:

Type Description
ValueError

If trying to using async methods without aclient

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
async def async_add(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
    """
    Asynchronous method to add nodes to Qdrant index.

    Args:
        nodes: List[BaseNode]: List of nodes with embeddings.

    Returns:
        List of node IDs that were added to the index.

    Raises:
        ValueError: If trying to using async methods without aclient
    """
    from qdrant_client.http.exceptions import UnexpectedResponse

    collection_initialized = await self._acollection_exists(self.collection_name)

    if len(nodes) > 0 and not collection_initialized:
        await self._acreate_collection(
            collection_name=self.collection_name,
            vector_size=len(nodes[0].get_embedding()),
        )

    sparse_vector_name = await self.asparse_vector_name()
    points, ids = self._build_points(nodes, sparse_vector_name)

    for batch in iter_batch(points, self.batch_size):
        retries = 0
        while retries < self.max_retries:
            try:
                await self._aclient.upsert(
                    collection_name=self.collection_name,
                    points=batch,
                )
                break
            except (RpcError, UnexpectedResponse) as exc:
                retries += 1
                if retries >= self.max_retries:
                    raise exc  # noqa: TRY201

    return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    self._client.delete(
        collection_name=self.collection_name,
        points_selector=rest.Filter(
            must=[
                rest.FieldCondition(
                    key=DOCUMENT_ID_KEY, match=rest.MatchValue(value=ref_doc_id)
                )
            ]
        ),
    )

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Asynchronous method to delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Asynchronous method to delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    await self._aclient.delete(
        collection_name=self.collection_name,
        points_selector=rest.Filter(
            must=[
                rest.FieldCondition(
                    key=DOCUMENT_ID_KEY, match=rest.MatchValue(value=ref_doc_id)
                )
            ]
        ),
    )

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Delete nodes using with node_ids.

Parameters:

Name Type Description Default
node_ids Optional[List[str]

List of node IDs to delete.

None
filters Optional[MetadataFilters]

Metadata filters to apply.

None
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Delete nodes using with node_ids.

    Args:
        node_ids (Optional[List[str]): List of node IDs to delete.
        filters (Optional[MetadataFilters]): Metadata filters to apply.
    """
    should = []
    if node_ids is not None:
        should = [
            HasIdCondition(
                has_id=node_ids,
            )
        ]

    if filters is not None:
        filter = self._build_subfilter(filters)
        if filter.should is None:
            filter.should = should
        else:
            filter.should.extend(should)
    else:
        filter = Filter(should=should)

    self._client.delete(
        collection_name=self.collection_name,
        points_selector=filter,
    )

adelete_nodes async #

adelete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Asynchronous method to delete nodes using with node_ids.

Parameters:

Name Type Description Default
node_ids Optional[List[str]

List of node IDs to delete.

None
filters Optional[MetadataFilters]

Metadata filters to apply.

None
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
async def adelete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Asynchronous method to delete nodes using with node_ids.

    Args:
        node_ids (Optional[List[str]): List of node IDs to delete.
        filters (Optional[MetadataFilters]): Metadata filters to apply.
    """
    should = []
    if node_ids is not None:
        should = [
            HasIdCondition(
                has_id=node_ids,
            )
        ]

    if filters is not None:
        filter = self._build_subfilter(filters)
        if filter.should is None:
            filter.should = should
        else:
            filter.should.extend(should)
    else:
        filter = Filter(should=should)

    await self._aclient.delete(
        collection_name=self.collection_name,
        points_selector=filter,
    )

clear #

clear() -> None

Clear the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
577
578
579
580
581
582
def clear(self) -> None:
    """
    Clear the index.
    """
    self._client.delete_collection(collection_name=self.collection_name)
    self._collection_initialized = False

aclear async #

aclear() -> None

Asynchronous method to clear the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
584
585
586
587
588
589
async def aclear(self) -> None:
    """
    Asynchronous method to clear the index.
    """
    await self._aclient.delete_collection(collection_name=self.collection_name)
    self._collection_initialized = False

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

query

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
def query(
    self,
    query: VectorStoreQuery,
    **kwargs: Any,
) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): query
    """
    query_embedding = cast(List[float], query.query_embedding)
    #  NOTE: users can pass in qdrant_filters (nested/complicated filters) to override the default MetadataFilters
    qdrant_filters = kwargs.get("qdrant_filters")
    if qdrant_filters is not None:
        query_filter = qdrant_filters
    else:
        query_filter = cast(Filter, self._build_query_filter(query))

    if query.mode == VectorStoreQueryMode.HYBRID and not self.enable_hybrid:
        raise ValueError(
            "Hybrid search is not enabled. Please build the query with "
            "`enable_hybrid=True` in the constructor."
        )
    elif (
        query.mode == VectorStoreQueryMode.HYBRID
        and self.enable_hybrid
        and self._sparse_query_fn is not None
        and query.query_str is not None
    ):
        sparse_indices, sparse_embedding = self._sparse_query_fn(
            [query.query_str],
        )
        sparse_top_k = query.sparse_top_k or query.similarity_top_k

        sparse_response = self._client.search_batch(
            collection_name=self.collection_name,
            requests=[
                rest.SearchRequest(
                    vector=rest.NamedVector(
                        name=DENSE_VECTOR_NAME,
                        vector=query_embedding,
                    ),
                    limit=query.similarity_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
                rest.SearchRequest(
                    vector=rest.NamedSparseVector(
                        # Dynamically switch between the old and new sparse vector name
                        name=self.sparse_vector_name(),
                        vector=rest.SparseVector(
                            indices=sparse_indices[0],
                            values=sparse_embedding[0],
                        ),
                    ),
                    limit=sparse_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
            ],
        )

        # sanity check
        assert len(sparse_response) == 2
        assert self._hybrid_fusion_fn is not None

        # flatten the response
        return self._hybrid_fusion_fn(
            self.parse_to_query_result(sparse_response[0]),
            self.parse_to_query_result(sparse_response[1]),
            # NOTE: only for hybrid search (0 for sparse search, 1 for dense search)
            alpha=query.alpha or 0.5,
            # NOTE: use hybrid_top_k if provided, otherwise use similarity_top_k
            top_k=query.hybrid_top_k or query.similarity_top_k,
        )
    elif (
        query.mode == VectorStoreQueryMode.SPARSE
        and self.enable_hybrid
        and self._sparse_query_fn is not None
        and query.query_str is not None
    ):
        sparse_indices, sparse_embedding = self._sparse_query_fn(
            [query.query_str],
        )
        sparse_top_k = query.sparse_top_k or query.similarity_top_k

        sparse_response = self._client.search_batch(
            collection_name=self.collection_name,
            requests=[
                rest.SearchRequest(
                    vector=rest.NamedSparseVector(
                        # Dynamically switch between the old and new sparse vector name
                        name=self.sparse_vector_name(),
                        vector=rest.SparseVector(
                            indices=sparse_indices[0],
                            values=sparse_embedding[0],
                        ),
                    ),
                    limit=sparse_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
            ],
        )
        return self.parse_to_query_result(sparse_response[0])

    elif self.enable_hybrid:
        # search for dense vectors only
        response = self._client.search_batch(
            collection_name=self.collection_name,
            requests=[
                rest.SearchRequest(
                    vector=rest.NamedVector(
                        name=DENSE_VECTOR_NAME,
                        vector=query_embedding,
                    ),
                    limit=query.similarity_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
            ],
        )

        return self.parse_to_query_result(response[0])
    else:
        response = self._client.search(
            collection_name=self.collection_name,
            query_vector=query_embedding,
            limit=query.similarity_top_k,
            query_filter=query_filter,
        )
        return self.parse_to_query_result(response)

aquery async #

aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Asynchronous method to query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

query

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
async def aquery(
    self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Asynchronous method to query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): query
    """
    query_embedding = cast(List[float], query.query_embedding)

    #  NOTE: users can pass in qdrant_filters (nested/complicated filters) to override the default MetadataFilters
    qdrant_filters = kwargs.get("qdrant_filters")
    if qdrant_filters is not None:
        query_filter = qdrant_filters
    else:
        # build metadata filters
        query_filter = cast(Filter, self._build_query_filter(query))

    if query.mode == VectorStoreQueryMode.HYBRID and not self.enable_hybrid:
        raise ValueError(
            "Hybrid search is not enabled. Please build the query with "
            "`enable_hybrid=True` in the constructor."
        )
    elif (
        query.mode == VectorStoreQueryMode.HYBRID
        and self.enable_hybrid
        and self._sparse_query_fn is not None
        and query.query_str is not None
    ):
        sparse_indices, sparse_embedding = self._sparse_query_fn(
            [query.query_str],
        )
        sparse_top_k = query.sparse_top_k or query.similarity_top_k

        sparse_response = await self._aclient.search_batch(
            collection_name=self.collection_name,
            requests=[
                rest.SearchRequest(
                    vector=rest.NamedVector(
                        name=DENSE_VECTOR_NAME,
                        vector=query_embedding,
                    ),
                    limit=query.similarity_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
                rest.SearchRequest(
                    vector=rest.NamedSparseVector(
                        # Dynamically switch between the old and new sparse vector name
                        name=await self.asparse_vector_name(),
                        vector=rest.SparseVector(
                            indices=sparse_indices[0],
                            values=sparse_embedding[0],
                        ),
                    ),
                    limit=sparse_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
            ],
        )

        # sanity check
        assert len(sparse_response) == 2
        assert self._hybrid_fusion_fn is not None

        # flatten the response
        return self._hybrid_fusion_fn(
            self.parse_to_query_result(sparse_response[0]),
            self.parse_to_query_result(sparse_response[1]),
            alpha=query.alpha or 0.5,
            # NOTE: use hybrid_top_k if provided, otherwise use similarity_top_k
            top_k=query.hybrid_top_k or query.similarity_top_k,
        )
    elif (
        query.mode == VectorStoreQueryMode.SPARSE
        and self.enable_hybrid
        and self._sparse_query_fn is not None
        and query.query_str is not None
    ):
        sparse_indices, sparse_embedding = self._sparse_query_fn(
            [query.query_str],
        )
        sparse_top_k = query.sparse_top_k or query.similarity_top_k

        sparse_response = await self._aclient.search_batch(
            collection_name=self.collection_name,
            requests=[
                rest.SearchRequest(
                    vector=rest.NamedSparseVector(
                        # Dynamically switch between the old and new sparse vector name
                        name=await self.asparse_vector_name(),
                        vector=rest.SparseVector(
                            indices=sparse_indices[0],
                            values=sparse_embedding[0],
                        ),
                    ),
                    limit=sparse_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
            ],
        )
        return self.parse_to_query_result(sparse_response[0])
    elif self.enable_hybrid:
        # search for dense vectors only
        response = await self._aclient.search_batch(
            collection_name=self.collection_name,
            requests=[
                rest.SearchRequest(
                    vector=rest.NamedVector(
                        name=DENSE_VECTOR_NAME,
                        vector=query_embedding,
                    ),
                    limit=query.similarity_top_k,
                    filter=query_filter,
                    with_payload=True,
                ),
            ],
        )

        return self.parse_to_query_result(response[0])
    else:
        response = await self._aclient.search(
            collection_name=self.collection_name,
            query_vector=query_embedding,
            limit=query.similarity_top_k,
            query_filter=query_filter,
        )

        return self.parse_to_query_result(response)

parse_to_query_result #

parse_to_query_result(response: List[Any]) -> VectorStoreQueryResult

Convert vector store response to VectorStoreQueryResult.

Parameters:

Name Type Description Default
response List[Any]

List[Any]: List of results returned from the vector store.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-qdrant/llama_index/vector_stores/qdrant/base.py
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
def parse_to_query_result(self, response: List[Any]) -> VectorStoreQueryResult:
    """
    Convert vector store response to VectorStoreQueryResult.

    Args:
        response: List[Any]: List of results returned from the vector store.
    """
    nodes = []
    similarities = []
    ids = []

    for point in response:
        payload = cast(Payload, point.payload)
        try:
            node = metadata_dict_to_node(payload)
        except Exception:
            metadata, node_info, relationships = legacy_metadata_dict_to_node(
                payload
            )

            node = TextNode(
                id_=str(point.id),
                text=payload.get("text"),
                metadata=metadata,
                start_char_idx=node_info.get("start", None),
                end_char_idx=node_info.get("end", None),
                relationships=relationships,
            )
        nodes.append(node)
        ids.append(str(point.id))
        try:
            similarities.append(point.score)
        except AttributeError:
            # certain requests do not return a score
            similarities.append(1.0)

    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)