Milvus
MilvusVectorStore #
Bases: BasePydanticVectorStore
The Milvus Vector Store.
In this vector store we store the text, its embedding and
a its metadata in a Milvus collection. This implementation
allows the use of an already existing collection.
It also supports creating a new one if the collection doesn't
exist or if overwrite
is set to True.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uri |
str
|
The URI to connect to, comes in the form of "https://address:port" for Milvus or Zilliz Cloud service, or "path/to/local/milvus.db" for the lite local Milvus. Defaults to "./milvus_llamaindex.db". |
'./milvus_llamaindex.db'
|
token |
str
|
The token for log in. Empty if not using rbac, if using rbac it will most likely be "username:password". |
''
|
collection_name |
str
|
The name of the collection where data will be stored. Defaults to "llamalection". |
'llamacollection'
|
dim |
int
|
The dimension of the embedding vectors for the collection. Required if creating a new collection. |
None
|
embedding_field |
str
|
The name of the embedding field for the collection, defaults to DEFAULT_EMBEDDING_KEY. |
DEFAULT_EMBEDDING_KEY
|
doc_id_field |
str
|
The name of the doc_id field for the collection, defaults to DEFAULT_DOC_ID_KEY. |
DEFAULT_DOC_ID_KEY
|
similarity_metric |
str
|
The similarity metric to use, currently supports IP and L2. |
'IP'
|
consistency_level |
str
|
Which consistency level to use for a newly created collection. Defaults to "Session". |
'Session'
|
overwrite |
bool
|
Whether to overwrite existing collection with same name. Defaults to False. |
False
|
text_key |
str
|
What key text is stored in in the passed collection. Used when bringing your own collection. Defaults to None. |
None
|
index_config |
dict
|
The configuration used for building the Milvus index. Defaults to None. |
None
|
search_config |
dict
|
The configuration used for searching
the Milvus index. Note that this must be compatible with the index
type specified by |
None
|
collection_properties |
dict
|
The collection properties such as TTL (Time-To-Live) and MMAP (memory mapping). Defaults to None. It could include: - 'collection.ttl.seconds' (int): Once this property is set, data in the current collection expires in the specified time. Expired data in the collection will be cleaned up and will not be involved in searches or queries. - 'mmap.enabled' (bool): Whether to enable memory-mapped storage at the collection level. |
None
|
batch_size |
int
|
Configures the number of documents processed in one batch when inserting data into Milvus. Defaults to DEFAULT_BATCH_SIZE. |
DEFAULT_BATCH_SIZE
|
enable_sparse |
bool
|
A boolean flag indicating whether to enable support for sparse embeddings for hybrid retrieval. Defaults to False. |
False
|
sparse_embedding_function |
BaseSparseEmbeddingFunction
|
If enable_sparse is True, this object should be provided to convert text to a sparse embedding. |
None
|
hybrid_ranker |
str
|
Specifies the type of ranker used in hybrid search queries. Currently only supports ['RRFRanker','WeightedRanker']. Defaults to "RRFRanker". |
'RRFRanker'
|
hybrid_ranker_params |
dict
|
Configuration parameters for the hybrid ranker. The structure of this dictionary depends on the specific ranker being used: - For "RRFRanker", it should include: - 'k' (int): A parameter used in Reciprocal Rank Fusion (RRF). This value is used to calculate the rank scores as part of the RRF algorithm, which combines multiple ranking strategies into a single score to improve search relevance. - For "WeightedRanker", it expects: - 'weights' (list of float): A list of exactly two weights: 1. The weight for the dense embedding component. 2. The weight for the sparse embedding component. These weights are used to adjust the importance of the dense and sparse components of the embeddings in the hybrid retrieval process. Defaults to an empty dictionary, implying that the ranker will operate with its predefined default settings. |
{}
|
index_managemen |
IndexManagement
|
Specifies the index management strategy to use. Defaults to "create_if_not_exists". |
required |
Raises:
Type | Description |
---|---|
ImportError
|
Unable to import |
MilvusException
|
Error communicating with Milvus, more can be found in logging under Debug. |
Returns:
Name | Type | Description |
---|---|---|
MilvusVectorstore |
Vectorstore that supports add, delete, and query. |
Examples:
pip install llama-index-vector-stores-milvus
from llama_index.vector_stores.milvus import MilvusVectorStore
# Setup MilvusVectorStore
vector_store = MilvusVectorStore(
dim=1536,
collection_name="your_collection_name",
uri="http://milvus_address:port",
token="your_milvus_token_here",
overwrite=True
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add the embeddings and their nodes into Milvus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List of nodes with embeddings to insert. |
required |
Raises:
Type | Description |
---|---|
MilvusException
|
Failed to insert data. |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of ids inserted. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document to delete. |
required |
Raises:
Type | Description |
---|---|
MilvusException
|
Failed to delete the doc. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
delete_nodes #
delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None
Deletes nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_ids |
Optional[List[str]]
|
IDs of nodes to delete. Defaults to None. |
None
|
filters |
Optional[MetadataFilters]
|
Metadata filters. Defaults to None. |
None
|
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
|
clear #
clear() -> None
Clears db.
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
436 437 438 |
|
get_nodes #
get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None) -> List[BaseNode]
Get nodes by node ids or metadata filters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_ids |
Optional[List[str]]
|
IDs of nodes to retrieve. Defaults to None. |
None
|
filters |
Optional[MetadataFilters]
|
Metadata filters. Defaults to None. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
Neither or both of node_ids and filters are provided. |
Returns:
Type | Description |
---|---|
List[BaseNode]
|
List[BaseNode]: |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query_embedding |
List[float]
|
query embedding |
required |
similarity_top_k |
int
|
top k most similar nodes |
required |
doc_ids |
Optional[List[str]]
|
list of doc_ids to filter by |
required |
node_ids |
Optional[List[str]]
|
list of node_ids to filter by |
required |
output_fields |
Optional[List[str]]
|
list of fields to return |
required |
embedding_field |
Optional[str]
|
name of embedding field |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
|