Lindorm
LindormVectorStore #
Bases: BasePydanticVectorStore
Lindorm vector store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
client |
LindormVectorClient
|
Vector index client to use. for data insertion/querying. |
required |
Examples:
pip install llama-index
pip install opensearch-py
pip install llama-index-vector-stores-lindorm
from llama_index.vector_stores.lindorm import (
LindormVectorStore,
LindormVectorClient,
)
# lindorm instance info
# how to obtain an lindorm search instance:
# https://alibabacloud.com/help/en/lindorm/latest/create-an-instance
# how to access your lindorm search instance:
# https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints
# run curl commands to connect to and use LindormSearch:
# https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command
host = "ld-bp******jm*******-proxy-search-pub.lindorm.aliyuncs.com"
port = 30070
username = 'your_username'
password = 'your_password'
# index to demonstrate the VectorStore impl
index_name = "lindorm_test_index"
# extension param of lindorm search, number of cluster units to query; between 1 and method.parameters.nlist.
nprobe = "a number(string type)"
# extension param of lindorm search, usually used to improve recall accuracy, but it increases performance overhead;
# between 1 and 200; default: 10.
reorder_factor = "a number(string type)"
# LindormVectorClient encapsulates logic for a single index with vector search enabled
client = LindormVectorClient(
host=host,
port=port,
username=username,
password=password,
index=index_name,
dimension=1536, # match with your embedding model
nprobe=nprobe,
reorder_factor=reorder_factor,
# filter_type="pre_filter/post_filter(default)"
)
# initialize vector store
vector_store = LindormVectorStore(client)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of node_ids |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
async_add
async
#
async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Async add nodes to index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of node_ids |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using a ref_doc_id. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document whose nodes should be deleted. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
876 877 878 879 880 881 882 883 884 885 886 887 |
|
adelete
async
#
adelete(ref_doc_id: str, **delete_kwargs: Any) -> None
Async delete nodes using a ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document whose nodes should be deleted. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
889 890 891 892 893 894 895 896 897 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
VectorStoreQuery
|
Store query object. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
899 900 901 902 903 904 905 906 907 908 |
|
aquery
async
#
aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Async query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
VectorStoreQuery
|
Store query object. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lindorm/llama_index/vector_stores/lindorm/base.py
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|