Faiss
FaissVectorStore #
Bases: BasePydanticVectorStore
Faiss Vector Store.
Embeddings are stored within a Faiss index.
During query time, the index uses Faiss to query for the top k embeddings, and returns the corresponding indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
faiss_index |
Index
|
Faiss index instance |
required |
Examples:
pip install llama-index-vector-stores-faiss faiss-cpu
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
# create a faiss index
d = 1536 # dimension
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-faiss/llama_index/vector_stores/faiss/base.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
NOTE: in the Faiss vector store, we do not store text in Faiss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-faiss/llama_index/vector_stores/faiss/base.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
persist #
persist(persist_path: str = DEFAULT_PERSIST_PATH, fs: Optional[AbstractFileSystem] = None) -> None
Save to file.
This method saves the vector store to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
persist_path |
str
|
The save_path of the file. |
DEFAULT_PERSIST_PATH
|
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-faiss/llama_index/vector_stores/faiss/base.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document to delete. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-faiss/llama_index/vector_stores/faiss/base.py
168 169 170 171 172 173 174 175 176 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query_embedding |
List[float]
|
query embedding |
required |
similarity_top_k |
int
|
top k most similar nodes |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-faiss/llama_index/vector_stores/faiss/base.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|