Dashvector
DashVectorReader #
Bases: BaseReader
DashVector reader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
api_key |
str
|
DashVector API key. |
required |
endpoint |
str
|
DashVector cluster endpoint. |
required |
Source code in llama-index-integrations/readers/llama-index-readers-dashvector/llama_index/readers/dashvector/base.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
load_data #
load_data(collection_name: str, id_to_text_map: Dict[str, str], vector: Optional[List[float]], top_k: int, separate_documents: bool = True, filter: Optional[str] = None, include_vector: bool = True) -> List[Document]
Load data from DashVector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
Name of the collection. |
required |
id_to_text_map |
Dict[str, str]
|
A map from ID's to text. |
required |
separate_documents |
Optional[bool]
|
Whether to return separate documents per retrieved entry. Defaults to True. |
True
|
vector |
List[float]
|
Query vector. |
required |
top_k |
int
|
Number of results to return. |
required |
filter |
Optional[str]
|
doc fields filter conditions that meet the SQL where clause specification. |
None
|
include_vector |
bool
|
Whether to include the embedding in the response. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
List[Document]
|
List[Document]: A list of documents. |
Source code in llama-index-integrations/readers/llama-index-readers-dashvector/llama_index/readers/dashvector/base.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|