Skip to content

Auto prev next

Node PostProcessor module.

AutoPrevNextNodePostprocessor #

Bases: BaseNodePostprocessor

Previous/Next Node post-processor.

Allows users to fetch additional nodes from the document store, based on the prev/next relationships of the nodes.

NOTE: difference with PrevNextPostprocessor is that this infers forward/backwards direction.

NOTE: this is a beta feature.

Parameters:

Name Type Description Default
docstore BaseDocumentStore

The document store.

required
num_nodes int

The number of nodes to return (default: 1)

required
infer_prev_next_tmpl str

The template to use for inference. Required fields are {context_str} and {query_str}.

required
Source code in llama-index-core/llama_index/core/postprocessor/node.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
class AutoPrevNextNodePostprocessor(BaseNodePostprocessor):
    """Previous/Next Node post-processor.

    Allows users to fetch additional nodes from the document store,
    based on the prev/next relationships of the nodes.

    NOTE: difference with PrevNextPostprocessor is that
    this infers forward/backwards direction.

    NOTE: this is a beta feature.

    Args:
        docstore (BaseDocumentStore): The document store.
        num_nodes (int): The number of nodes to return (default: 1)
        infer_prev_next_tmpl (str): The template to use for inference.
            Required fields are {context_str} and {query_str}.

    """

    model_config = ConfigDict(arbitrary_types_allowed=True)
    docstore: BaseDocumentStore
    llm: Optional[SerializeAsAny[LLM]] = None
    num_nodes: int = Field(default=1)
    infer_prev_next_tmpl: str = Field(default=DEFAULT_INFER_PREV_NEXT_TMPL)
    refine_prev_next_tmpl: str = Field(default=DEFAULT_REFINE_INFER_PREV_NEXT_TMPL)
    verbose: bool = Field(default=False)
    response_mode: ResponseMode = Field(default=ResponseMode.COMPACT)

    @classmethod
    def class_name(cls) -> str:
        return "AutoPrevNextNodePostprocessor"

    def _parse_prediction(self, raw_pred: str) -> str:
        """Parse prediction."""
        pred = raw_pred.strip().lower()
        if "previous" in pred:
            return "previous"
        elif "next" in pred:
            return "next"
        elif "none" in pred:
            return "none"
        raise ValueError(f"Invalid prediction: {raw_pred}")

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        """Postprocess nodes."""
        llm = self.llm or Settings.llm

        if query_bundle is None:
            raise ValueError("Missing query bundle.")

        infer_prev_next_prompt = PromptTemplate(
            self.infer_prev_next_tmpl,
        )
        refine_infer_prev_next_prompt = PromptTemplate(self.refine_prev_next_tmpl)

        all_nodes: Dict[str, NodeWithScore] = {}
        for node in nodes:
            all_nodes[node.node.node_id] = node
            # use response builder instead of llm directly
            # to be more robust to handling long context
            response_builder = get_response_synthesizer(
                llm=llm,
                text_qa_template=infer_prev_next_prompt,
                refine_template=refine_infer_prev_next_prompt,
                response_mode=self.response_mode,
            )
            raw_pred = response_builder.get_response(
                text_chunks=[node.node.get_content()],
                query_str=query_bundle.query_str,
            )
            raw_pred = cast(str, raw_pred)
            mode = self._parse_prediction(raw_pred)

            logger.debug(f"> Postprocessor Predicted mode: {mode}")
            if self.verbose:
                print(f"> Postprocessor Predicted mode: {mode}")

            if mode == "next":
                all_nodes.update(get_forward_nodes(node, self.num_nodes, self.docstore))
            elif mode == "previous":
                all_nodes.update(
                    get_backward_nodes(node, self.num_nodes, self.docstore)
                )
            elif mode == "none":
                pass
            else:
                raise ValueError(f"Invalid mode: {mode}")

        sorted_nodes = sorted(all_nodes.values(), key=lambda x: x.node.node_id)
        return list(sorted_nodes)