Skip to content

Dashscope

DashScope #

Bases: CustomLLM

DashScope LLM.

Examples:

pip install llama-index-llms-dashscope

from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels

dashscope_llm = DashScope(model_name=DashScopeGenerationModels.QWEN_MAX)
response = llm.complete("What is the meaning of life?")
print(response.text)
Source code in llama-index-integrations/llms/llama-index-llms-dashscope/llama_index/llms/dashscope/base.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class DashScope(CustomLLM):
    """DashScope LLM.

    Examples:
        `pip install llama-index-llms-dashscope`

        ```python
        from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels

        dashscope_llm = DashScope(model_name=DashScopeGenerationModels.QWEN_MAX)
        response = llm.complete("What is the meaning of life?")
        print(response.text)
        ```
    """

    model_name: str = Field(
        default=DashScopeGenerationModels.QWEN_MAX,
        description="The DashScope model to use.",
    )
    max_tokens: Optional[int] = Field(
        description="The maximum number of tokens to generate.",
        default=DEFAULT_NUM_OUTPUTS,
        gt=0,
    )
    incremental_output: Optional[bool] = Field(
        description="Control stream output, If False, the subsequent \
                                                            output will include the content that has been \
                                                            output previously.",
        default=True,
    )
    enable_search: Optional[bool] = Field(
        description="The model has a built-in Internet search service. \
                                                            This parameter controls whether the model refers to \
                                                            the Internet search results when generating text.",
        default=False,
    )
    stop: Optional[Any] = Field(
        description="str, list of str or token_id, list of token id. It will automatically \
                                             stop when the generated content is about to contain the specified string \
                                             or token_ids, and the generated content does not contain \
                                             the specified content.",
        default=None,
    )
    temperature: Optional[float] = Field(
        description="The temperature to use during generation.",
        default=DEFAULT_TEMPERATURE,
        gte=0.0,
        lte=2.0,
    )
    top_k: Optional[int] = Field(
        description="Sample counter when generate.", default=None
    )
    top_p: Optional[float] = Field(
        description="Sample probability threshold when generate."
    )
    seed: Optional[int] = Field(
        description="Random seed when generate.", default=1234, gte=0
    )
    repetition_penalty: Optional[float] = Field(
        description="Penalty for repeated words in generated text; \
                                                             1.0 is no penalty, values greater than 1 discourage \
                                                             repetition.",
        default=None,
    )
    api_key: str = Field(
        default=None, description="The DashScope API key.", exclude=True
    )

    def __init__(
        self,
        model_name: Optional[str] = DashScopeGenerationModels.QWEN_MAX,
        max_tokens: Optional[int] = DEFAULT_NUM_OUTPUTS,
        incremental_output: Optional[int] = True,
        enable_search: Optional[bool] = False,
        stop: Optional[Any] = None,
        temperature: Optional[float] = DEFAULT_TEMPERATURE,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        seed: Optional[int] = 1234,
        api_key: Optional[str] = None,
        callback_manager: Optional[CallbackManager] = None,
        **kwargs: Any,
    ):
        super().__init__(
            model_name=model_name,
            max_tokens=max_tokens,
            incremental_output=incremental_output,
            enable_search=enable_search,
            stop=stop,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            seed=seed,
            api_key=api_key,
            callback_manager=callback_manager,
            kwargs=kwargs,
        )

    @classmethod
    def class_name(cls) -> str:
        return "DashScope_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        DASHSCOPE_MODEL_META[self.model_name]["num_output"] = (
            self.max_tokens or DASHSCOPE_MODEL_META[self.model_name]["num_output"]
        )
        return LLMMetadata(
            model_name=self.model_name, **DASHSCOPE_MODEL_META[self.model_name]
        )

    def _get_default_parameters(self) -> Dict:
        params: Dict[Any, Any] = {}
        if self.max_tokens is not None:
            params["max_tokens"] = self.max_tokens
        params["incremental_output"] = self.incremental_output
        params["enable_search"] = self.enable_search
        if self.stop is not None:
            params["stop"] = self.stop
        if self.temperature is not None:
            params["temperature"] = self.temperature

        if self.top_k is not None:
            params["top_k"] = self.top_k

        if self.top_p is not None:
            params["top_p"] = self.top_p
        if self.seed is not None:
            params["seed"] = self.seed

        return params

    def _get_input_parameters(
        self, prompt: str, **kwargs: Any
    ) -> Tuple[ChatMessage, Dict]:
        parameters = self._get_default_parameters()
        parameters.update(kwargs)
        parameters["stream"] = False
        # we only use message response
        parameters["result_format"] = "message"
        message = ChatMessage(
            role=MessageRole.USER.value,
            content=prompt,
        )
        return message, parameters

    @llm_completion_callback()
    def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        message, parameters = self._get_input_parameters(prompt=prompt, **kwargs)
        parameters.pop("incremental_output", None)
        parameters.pop("stream", None)
        messages = chat_message_to_dashscope_messages([message])
        response = call_with_messages(
            model=self.model_name,
            messages=messages,
            api_key=self.api_key,
            parameters=parameters,
        )
        return dashscope_response_to_completion_response(response)

    @llm_completion_callback()
    def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
        message, parameters = self._get_input_parameters(prompt=prompt, kwargs=kwargs)
        parameters["incremental_output"] = True
        parameters["stream"] = True
        responses = call_with_messages(
            model=self.model_name,
            messages=chat_message_to_dashscope_messages([message]),
            api_key=self.api_key,
            parameters=parameters,
        )

        def gen() -> CompletionResponseGen:
            content = ""
            for response in responses:
                if response.status_code == HTTPStatus.OK:
                    top_choice = response.output.choices[0]
                    incremental_output = top_choice["message"]["content"]
                    if not incremental_output:
                        incremental_output = ""

                    content += incremental_output
                    yield CompletionResponse(
                        text=content, delta=incremental_output, raw=response
                    )
                else:
                    yield CompletionResponse(text="", raw=response)
                    return

        return gen()

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        parameters = self._get_default_parameters()
        parameters.update({**kwargs})
        parameters.pop("stream", None)
        parameters.pop("incremental_output", None)
        parameters["result_format"] = "message"  # only use message format.
        response = call_with_messages(
            model=self.model_name,
            messages=chat_message_to_dashscope_messages(messages),
            api_key=self.api_key,
            parameters=parameters,
        )
        return dashscope_response_to_chat_response(response)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        parameters = self._get_default_parameters()
        parameters.update({**kwargs})
        parameters["stream"] = True
        parameters["incremental_output"] = True
        parameters["result_format"] = "message"  # only use message format.
        response = call_with_messages(
            model=self.model_name,
            messages=chat_message_to_dashscope_messages(messages),
            api_key=self.api_key,
            parameters=parameters,
        )

        def gen() -> ChatResponseGen:
            content = ""
            for r in response:
                if r.status_code == HTTPStatus.OK:
                    top_choice = r.output.choices[0]
                    incremental_output = top_choice["message"]["content"]
                    role = top_choice["message"]["role"]
                    content += incremental_output
                    yield ChatResponse(
                        message=ChatMessage(role=role, content=content),
                        delta=incremental_output,
                        raw=r,
                    )
                else:
                    yield ChatResponse(message=ChatMessage(), raw=response)
                    return

        return gen()