Skip to content

Services

BaseService #

Bases: MessageQueuePublisherMixin, ABC, BaseModel

Base class for a service.

The general structure of a service is as follows: - A service has a name. - A service has a service definition. - A service uses a message queue to send/receive messages. - A service has a processing loop, for continuous processing of messages. - A service can process a message. - A service can publish a message to another service. - A service can be launched in-process. - A service can be launched as a server. - A service can be registered to the control plane. - A service can be registered to the message queue.

Source code in llama-agents/llama_deploy/services/base.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class BaseService(MessageQueuePublisherMixin, ABC, BaseModel):
    """Base class for a service.

    The general structure of a service is as follows:
    - A service has a name.
    - A service has a service definition.
    - A service uses a message queue to send/receive messages.
    - A service has a processing loop, for continuous processing of messages.
    - A service can process a message.
    - A service can publish a message to another service.
    - A service can be launched in-process.
    - A service can be launched as a server.
    - A service can be registered to the control plane.
    - A service can be registered to the message queue.
    """

    model_config = ConfigDict(arbitrary_types_allowed=True)
    service_name: str

    @property
    @abstractmethod
    def service_definition(self) -> ServiceDefinition:
        """The service definition."""
        ...

    @abstractmethod
    def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
        """Get the consumer for the message queue."""
        ...

    @abstractmethod
    async def processing_loop(self) -> None:
        """The processing loop for the service."""
        ...

    @abstractmethod
    async def process_message(self, message: QueueMessage) -> Any:
        """Process a message."""
        ...

    @abstractmethod
    async def launch_local(self) -> asyncio.Task:
        """Launch the service in-process."""
        ...

    @abstractmethod
    async def launch_server(self) -> None:
        """Launch the service as a server."""
        ...

    async def register_to_control_plane(self, control_plane_url: str) -> None:
        """Register the service to the control plane."""
        service_def = self.service_definition
        async with httpx.AsyncClient() as client:
            response = await client.post(
                f"{control_plane_url}/services/register",
                json=service_def.model_dump(),
            )
            response.raise_for_status()

    async def deregister_from_control_plane(self, control_plane_url: str) -> None:
        """Deregister the service from the control plane."""
        async with httpx.AsyncClient() as client:
            response = await client.post(
                f"{control_plane_url}/services/deregister",
                json={"service_name": self.service_name},
            )
            response.raise_for_status()

    async def register_to_message_queue(self) -> StartConsumingCallable:
        """Register the service to the message queue."""
        return await self.message_queue.register_consumer(self.as_consumer(remote=True))

service_definition abstractmethod property #

service_definition: ServiceDefinition

The service definition.

as_consumer abstractmethod #

as_consumer(remote: bool = False) -> BaseMessageQueueConsumer

Get the consumer for the message queue.

Source code in llama-agents/llama_deploy/services/base.py
41
42
43
44
@abstractmethod
def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
    """Get the consumer for the message queue."""
    ...

processing_loop abstractmethod async #

processing_loop() -> None

The processing loop for the service.

Source code in llama-agents/llama_deploy/services/base.py
46
47
48
49
@abstractmethod
async def processing_loop(self) -> None:
    """The processing loop for the service."""
    ...

process_message abstractmethod async #

process_message(message: QueueMessage) -> Any

Process a message.

Source code in llama-agents/llama_deploy/services/base.py
51
52
53
54
@abstractmethod
async def process_message(self, message: QueueMessage) -> Any:
    """Process a message."""
    ...

launch_local abstractmethod async #

launch_local() -> Task

Launch the service in-process.

Source code in llama-agents/llama_deploy/services/base.py
56
57
58
59
@abstractmethod
async def launch_local(self) -> asyncio.Task:
    """Launch the service in-process."""
    ...

launch_server abstractmethod async #

launch_server() -> None

Launch the service as a server.

Source code in llama-agents/llama_deploy/services/base.py
61
62
63
64
@abstractmethod
async def launch_server(self) -> None:
    """Launch the service as a server."""
    ...

register_to_control_plane async #

register_to_control_plane(control_plane_url: str) -> None

Register the service to the control plane.

Source code in llama-agents/llama_deploy/services/base.py
66
67
68
69
70
71
72
73
74
async def register_to_control_plane(self, control_plane_url: str) -> None:
    """Register the service to the control plane."""
    service_def = self.service_definition
    async with httpx.AsyncClient() as client:
        response = await client.post(
            f"{control_plane_url}/services/register",
            json=service_def.model_dump(),
        )
        response.raise_for_status()

deregister_from_control_plane async #

deregister_from_control_plane(control_plane_url: str) -> None

Deregister the service from the control plane.

Source code in llama-agents/llama_deploy/services/base.py
76
77
78
79
80
81
82
83
async def deregister_from_control_plane(self, control_plane_url: str) -> None:
    """Deregister the service from the control plane."""
    async with httpx.AsyncClient() as client:
        response = await client.post(
            f"{control_plane_url}/services/deregister",
            json={"service_name": self.service_name},
        )
        response.raise_for_status()

register_to_message_queue async #

register_to_message_queue() -> StartConsumingCallable

Register the service to the message queue.

Source code in llama-agents/llama_deploy/services/base.py
85
86
87
async def register_to_message_queue(self) -> StartConsumingCallable:
    """Register the service to the message queue."""
    return await self.message_queue.register_consumer(self.as_consumer(remote=True))

AgentService #

Bases: BaseService

Agent Service.

A service that runs an agent locally, processing incoming tasks step-wise in an endless loop.

Messages are published to the message queue, and the agent processes them in a loop, finally returning a message with the completed task.

This AgentService can either be run in a local loop or as a Fast-API server.

Exposes the following endpoints: - GET /: Home endpoint. - POST /process_message: Process a message. - POST /task: Create a task. - GET /messages: Get messages. - POST /toggle_agent_running: Toggle the agent running state. - GET /is_worker_running: Check if the agent is running. - POST /reset_agent: Reset the agent.

Since the agent can launch as a FastAPI server, you can visit /docs for full swagger documentation.

Attributes:

Name Type Description
service_name str

The name of the service.

agent AgentRunner

The agent to run.

description str

The description of the service.

prompt Optional[List[ChatMessage]]

The prompt messages, meant to be appended to the start of tasks (currently TODO).

running bool

Whether the agent is running.

step_interval float

The interval in seconds to poll for task completion. Defaults to 0.1s.

host Optional[str]

The host to launch a FastAPI server on.

port Optional[int]

The port to launch a FastAPI server on.

raise_exceptions bool

Whether to raise exceptions in the processing loop.

Examples:

from llama_deploy import AgentService
from llama_index.core.agent import ReActAgent

agent = ReActAgent.from_tools([...], llm=llm)
agent_service = AgentService(
    agent,
    message_queue,
    service_name="my_agent_service",
    description="My Agent Service",
    host="127.0.0.1",
    port=8003,
)

# launch as a server for remote access or documentation
await agent_service.launch_server()
Source code in llama-agents/llama_deploy/services/agent.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
class AgentService(BaseService):
    """Agent Service.

    A service that runs an agent locally, processing incoming tasks step-wise in an endless loop.

    Messages are published to the message queue, and the agent processes them in a loop,
    finally returning a message with the completed task.

    This AgentService can either be run in a local loop or as a Fast-API server.

    Exposes the following endpoints:
    - GET `/`: Home endpoint.
    - POST `/process_message`: Process a message.
    - POST `/task`: Create a task.
    - GET `/messages`: Get messages.
    - POST `/toggle_agent_running`: Toggle the agent running state.
    - GET `/is_worker_running`: Check if the agent is running.
    - POST `/reset_agent`: Reset the agent.

    Since the agent can launch as a FastAPI server, you can visit `/docs` for full swagger documentation.

    Attributes:
        service_name (str):
            The name of the service.
        agent (AgentRunner):
            The agent to run.
        description (str):
            The description of the service.
        prompt (Optional[List[ChatMessage]]):
            The prompt messages, meant to be appended to the start of tasks (currently TODO).
        running (bool):
            Whether the agent is running.
        step_interval (float):
            The interval in seconds to poll for task completion. Defaults to 0.1s.
        host (Optional[str]):
            The host to launch a FastAPI server on.
        port (Optional[int]):
            The port to launch a FastAPI server on.
        raise_exceptions (bool):
            Whether to raise exceptions in the processing loop.

    Examples:
        ```python
        from llama_deploy import AgentService
        from llama_index.core.agent import ReActAgent

        agent = ReActAgent.from_tools([...], llm=llm)
        agent_service = AgentService(
            agent,
            message_queue,
            service_name="my_agent_service",
            description="My Agent Service",
            host="127.0.0.1",
            port=8003,
        )

        # launch as a server for remote access or documentation
        await agent_service.launch_server()
        ```
    """

    service_name: str
    agent: AgentRunner
    description: str = "Local Agent Service."
    prompt: Optional[List[ChatMessage]] = None
    running: bool = True
    step_interval: float = 0.1
    host: Optional[str] = None
    port: Optional[int] = None
    raise_exceptions: bool = False

    _message_queue: BaseMessageQueue = PrivateAttr()
    _app: FastAPI = PrivateAttr()
    _publisher_id: str = PrivateAttr()
    _publish_callback: Optional[PublishCallback] = PrivateAttr()
    _lock: asyncio.Lock = PrivateAttr()
    _tasks_as_tool_calls: Dict[str, ToolCall] = PrivateAttr()

    def __init__(
        self,
        agent: AgentRunner,
        message_queue: BaseMessageQueue,
        running: bool = True,
        description: str = "Agent Server",
        service_name: str = "default_agent",
        prompt: Optional[List[ChatMessage]] = None,
        publish_callback: Optional[PublishCallback] = None,
        step_interval: float = 0.1,
        host: Optional[str] = None,
        port: Optional[int] = None,
        raise_exceptions: bool = False,
    ) -> None:
        super().__init__(
            agent=agent,
            running=running,
            description=description,
            service_name=service_name,
            step_interval=step_interval,
            prompt=prompt,
            host=host,
            port=port,
            raise_exceptions=raise_exceptions,
        )

        self._lock = asyncio.Lock()
        self._tasks_as_tool_calls = {}
        self._message_queue = message_queue
        self._publisher_id = f"{self.__class__.__qualname__}-{uuid.uuid4()}"
        self._publish_callback = publish_callback
        self._app = FastAPI(lifespan=self.lifespan)

        self._app.add_api_route("/", self.home, methods=["GET"], tags=["Agent State"])

        self._app.add_api_route(
            "/process_message",
            self.process_message,
            methods=["POST"],
            tags=["Message Processing"],
        )

        self._app.add_api_route(
            "/task", self.create_task, methods=["POST"], tags=["Tasks"]
        )

        self._app.add_api_route(
            "/messages", self.get_messages, methods=["GET"], tags=["Agent State"]
        )
        self._app.add_api_route(
            "/toggle_agent_running",
            self.toggle_agent_running,
            methods=["POST"],
            tags=["Agent State"],
        )
        self._app.add_api_route(
            "/is_worker_running",
            self.is_worker_running,
            methods=["GET"],
            tags=["Agent State"],
        )
        self._app.add_api_route(
            "/reset_agent", self.reset_agent, methods=["POST"], tags=["Agent State"]
        )

    @property
    def service_definition(self) -> ServiceDefinition:
        """The service definition."""
        return ServiceDefinition(
            service_name=self.service_name,
            description=self.description,
            prompt=self.prompt or [],
            host=self.host,
            port=self.port,
        )

    @property
    def message_queue(self) -> BaseMessageQueue:
        """The message queue."""
        return self._message_queue

    @property
    def publisher_id(self) -> str:
        """The publisher id."""
        return self._publisher_id

    @property
    def publish_callback(self) -> Optional[PublishCallback]:
        """The publish callback, if any."""
        return self._publish_callback

    @property
    def lock(self) -> asyncio.Lock:
        return self._lock

    @property
    def tool_name(self) -> str:
        """The name reserved when this service is used as a tool."""
        return get_tool_name_from_service_name(self.service_name)

    async def processing_loop(self) -> None:
        """The processing loop for the agent."""
        logger.info("Processing initiated.")
        while True:
            try:
                if not self.running:
                    await asyncio.sleep(self.step_interval)
                    continue

                current_tasks = self.agent.list_tasks()
                current_task_ids = [task.task_id for task in current_tasks]

                completed_tasks = self.agent.get_completed_tasks()
                completed_task_ids = [task.task_id for task in completed_tasks]

                for task_id in current_task_ids:
                    if task_id in completed_task_ids:
                        continue

                    step_output = await self.agent.arun_step(task_id)

                    if step_output.is_last:
                        # finalize the response
                        response = self.agent.finalize_response(
                            task_id, step_output=step_output
                        )

                        # convert memory chat messages
                        llama_messages = self.agent.memory.get()
                        history = [ChatMessage(**x.dict()) for x in llama_messages]

                        # publish the completed task
                        async with self.lock:
                            try:
                                tool_call = self._tasks_as_tool_calls.pop(task_id)
                            except KeyError:
                                tool_call = None

                        if tool_call:
                            await self.publish(
                                QueueMessage(
                                    type=tool_call.source_id,
                                    action=ActionTypes.COMPLETED_TOOL_CALL,
                                    data=ToolCallResult(
                                        id_=tool_call.id_,
                                        tool_message=ChatMessage(
                                            content=str(response.response),
                                            role=MessageRole.TOOL,
                                            additional_kwargs={
                                                "name": tool_call.tool_call_bundle.tool_name,
                                                "tool_call_id": tool_call.id_,
                                            },
                                        ),
                                        result=response.response,
                                    ).model_dump(),
                                )
                            )
                        else:
                            await self.publish(
                                QueueMessage(
                                    type=CONTROL_PLANE_NAME,
                                    action=ActionTypes.COMPLETED_TASK,
                                    data=TaskResult(
                                        task_id=task_id,
                                        history=history,
                                        result=response.response,
                                    ).model_dump(),
                                )
                            )
            except Exception as e:
                logger.error(f"Error in {self.service_name} processing_loop: {e}")
                if self.raise_exceptions:
                    # Kill everything
                    # TODO: is there a better way to do this?
                    import signal

                    signal.raise_signal(signal.SIGINT)
                else:
                    await self.message_queue.publish(
                        QueueMessage(
                            type=CONTROL_PLANE_NAME,
                            action=ActionTypes.COMPLETED_TASK,
                            data=TaskResult(
                                task_id=task_id,
                                history=[],
                                result=f"Error during processing: {e}",
                            ).model_dump(),
                        )
                    )

                continue

            await asyncio.sleep(self.step_interval)

    async def process_message(self, message: QueueMessage) -> None:
        """Handling for when a message is received."""
        if message.action == ActionTypes.NEW_TASK:
            new_task = NewTask(**message.data or {})
            task_def = new_task.task
            self.agent.create_task(task_def.input, task_id=task_def.task_id)
            logger.info(f"Created new task: {task_def.task_id}")
        elif message.action == ActionTypes.NEW_TOOL_CALL:
            task_def = TaskDefinition(**message.data or {})
            async with self.lock:
                tool_call_bundle = ToolCallBundle(
                    tool_name=self.tool_name,
                    tool_args=(),
                    tool_kwargs={"input": task_def.input},
                )
                task_as_tool_call = ToolCall(
                    id_=task_def.task_id,
                    source_id=message.publisher_id,
                    tool_call_bundle=tool_call_bundle,
                )
                self._tasks_as_tool_calls[task_def.task_id] = task_as_tool_call
            self.agent.create_task(task_def.input, task_id=task_def.task_id)
            logger.info(f"Created new tool call as task: {task_def.task_id}")
        else:
            raise ValueError(f"Unhandled action: {message.action}")

    def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
        """Get the consumer for the message queue.

        Args:
            remote (bool):
                Whether to get a remote consumer or local.
                If remote, calls the `process_message` endpoint.
        """
        if remote:
            url = (
                f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
                if self.port
                else f"http://{self.host}{self._app.url_path_for('process_message')}"
            )
            return RemoteMessageConsumer(
                id_=self.publisher_id,
                url=url,
                message_type=self.service_name,
            )

        return CallableMessageConsumer(
            id_=self.publisher_id,
            message_type=self.service_name,
            handler=self.process_message,
        )

    async def launch_local(self) -> asyncio.Task:
        """Launch the agent locally."""
        logger.info(f"{self.service_name} launch_local")
        return asyncio.create_task(self.processing_loop())

    # ---- Server based methods ----

    @asynccontextmanager
    async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
        """Starts the processing loop when the fastapi app starts."""
        asyncio.create_task(self.processing_loop())
        yield
        self.running = False

    async def home(self) -> Dict[str, str]:
        """Home endpoint. Gets general information about the agent service."""
        tasks = self.agent.list_tasks()

        task_strings = []
        for task in tasks:
            task_output = self.agent.get_task_output(task.task_id)
            status = "COMPLETE" if task_output.is_last else "IN PROGRESS"
            memory_str = "\n".join(
                [f"{x.role}: {x.content}" for x in task.memory.get_all()]
            )
            task_strings.append(f"Agent Task {task.task_id}: {status}\n{memory_str}")

        complete_task_string = "\n".join(task_strings)

        return {
            "service_name": self.service_name,
            "description": self.description,
            "running": str(self.running),
            "step_interval": str(self.step_interval),
            "num_tasks": str(len(tasks)),
            "num_completed_tasks": str(len(self.agent.get_completed_tasks())),
            "prompt": "\n".join([str(x) for x in self.prompt]) if self.prompt else "",
            "type": "agent_service",
            "tasks": complete_task_string,
        }

    async def create_task(self, task: TaskDefinition) -> Dict[str, str]:
        """Create a task."""
        task_id = self.agent.create_task(task, task_id=task.task_id)
        return {"task_id": task_id}

    async def get_messages(self) -> List[_ChatMessage]:
        """Get messages from the agent."""
        messages = self.agent.chat_history

        return [_ChatMessage.from_chat_message(message) for message in messages]

    async def toggle_agent_running(
        self, state: Literal["running", "stopped"]
    ) -> Dict[str, bool]:
        """Toggle the agent running state."""
        self.running = state == "running"

        return {"running": self.running}

    async def is_worker_running(self) -> Dict[str, bool]:
        """Check if the agent is running."""
        return {"running": self.running}

    async def reset_agent(self) -> Dict[str, str]:
        """Reset the agent."""
        self.agent.reset()

        return {"message": "Agent reset"}

    async def launch_server(self) -> None:
        """Launch the agent as a FastAPI server."""
        logger.info(f"Launching {self.service_name} server at {self.host}:{self.port}")
        # uvicorn.run(self._app, host=self.host, port=self.port)

        class CustomServer(uvicorn.Server):
            def install_signal_handlers(self) -> None:
                pass

        cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
        server = CustomServer(cfg)
        await server.serve()

service_definition property #

service_definition: ServiceDefinition

The service definition.

message_queue property #

message_queue: BaseMessageQueue

The message queue.

publisher_id property #

publisher_id: str

The publisher id.

publish_callback property #

publish_callback: Optional[PublishCallback]

The publish callback, if any.

tool_name property #

tool_name: str

The name reserved when this service is used as a tool.

processing_loop async #

processing_loop() -> None

The processing loop for the agent.

Source code in llama-agents/llama_deploy/services/agent.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
async def processing_loop(self) -> None:
    """The processing loop for the agent."""
    logger.info("Processing initiated.")
    while True:
        try:
            if not self.running:
                await asyncio.sleep(self.step_interval)
                continue

            current_tasks = self.agent.list_tasks()
            current_task_ids = [task.task_id for task in current_tasks]

            completed_tasks = self.agent.get_completed_tasks()
            completed_task_ids = [task.task_id for task in completed_tasks]

            for task_id in current_task_ids:
                if task_id in completed_task_ids:
                    continue

                step_output = await self.agent.arun_step(task_id)

                if step_output.is_last:
                    # finalize the response
                    response = self.agent.finalize_response(
                        task_id, step_output=step_output
                    )

                    # convert memory chat messages
                    llama_messages = self.agent.memory.get()
                    history = [ChatMessage(**x.dict()) for x in llama_messages]

                    # publish the completed task
                    async with self.lock:
                        try:
                            tool_call = self._tasks_as_tool_calls.pop(task_id)
                        except KeyError:
                            tool_call = None

                    if tool_call:
                        await self.publish(
                            QueueMessage(
                                type=tool_call.source_id,
                                action=ActionTypes.COMPLETED_TOOL_CALL,
                                data=ToolCallResult(
                                    id_=tool_call.id_,
                                    tool_message=ChatMessage(
                                        content=str(response.response),
                                        role=MessageRole.TOOL,
                                        additional_kwargs={
                                            "name": tool_call.tool_call_bundle.tool_name,
                                            "tool_call_id": tool_call.id_,
                                        },
                                    ),
                                    result=response.response,
                                ).model_dump(),
                            )
                        )
                    else:
                        await self.publish(
                            QueueMessage(
                                type=CONTROL_PLANE_NAME,
                                action=ActionTypes.COMPLETED_TASK,
                                data=TaskResult(
                                    task_id=task_id,
                                    history=history,
                                    result=response.response,
                                ).model_dump(),
                            )
                        )
        except Exception as e:
            logger.error(f"Error in {self.service_name} processing_loop: {e}")
            if self.raise_exceptions:
                # Kill everything
                # TODO: is there a better way to do this?
                import signal

                signal.raise_signal(signal.SIGINT)
            else:
                await self.message_queue.publish(
                    QueueMessage(
                        type=CONTROL_PLANE_NAME,
                        action=ActionTypes.COMPLETED_TASK,
                        data=TaskResult(
                            task_id=task_id,
                            history=[],
                            result=f"Error during processing: {e}",
                        ).model_dump(),
                    )
                )

            continue

        await asyncio.sleep(self.step_interval)

process_message async #

process_message(message: QueueMessage) -> None

Handling for when a message is received.

Source code in llama-agents/llama_deploy/services/agent.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
async def process_message(self, message: QueueMessage) -> None:
    """Handling for when a message is received."""
    if message.action == ActionTypes.NEW_TASK:
        new_task = NewTask(**message.data or {})
        task_def = new_task.task
        self.agent.create_task(task_def.input, task_id=task_def.task_id)
        logger.info(f"Created new task: {task_def.task_id}")
    elif message.action == ActionTypes.NEW_TOOL_CALL:
        task_def = TaskDefinition(**message.data or {})
        async with self.lock:
            tool_call_bundle = ToolCallBundle(
                tool_name=self.tool_name,
                tool_args=(),
                tool_kwargs={"input": task_def.input},
            )
            task_as_tool_call = ToolCall(
                id_=task_def.task_id,
                source_id=message.publisher_id,
                tool_call_bundle=tool_call_bundle,
            )
            self._tasks_as_tool_calls[task_def.task_id] = task_as_tool_call
        self.agent.create_task(task_def.input, task_id=task_def.task_id)
        logger.info(f"Created new tool call as task: {task_def.task_id}")
    else:
        raise ValueError(f"Unhandled action: {message.action}")

as_consumer #

as_consumer(remote: bool = False) -> BaseMessageQueueConsumer

Get the consumer for the message queue.

Parameters:

Name Type Description Default
remote bool

Whether to get a remote consumer or local. If remote, calls the process_message endpoint.

False
Source code in llama-agents/llama_deploy/services/agent.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
    """Get the consumer for the message queue.

    Args:
        remote (bool):
            Whether to get a remote consumer or local.
            If remote, calls the `process_message` endpoint.
    """
    if remote:
        url = (
            f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
            if self.port
            else f"http://{self.host}{self._app.url_path_for('process_message')}"
        )
        return RemoteMessageConsumer(
            id_=self.publisher_id,
            url=url,
            message_type=self.service_name,
        )

    return CallableMessageConsumer(
        id_=self.publisher_id,
        message_type=self.service_name,
        handler=self.process_message,
    )

launch_local async #

launch_local() -> Task

Launch the agent locally.

Source code in llama-agents/llama_deploy/services/agent.py
362
363
364
365
async def launch_local(self) -> asyncio.Task:
    """Launch the agent locally."""
    logger.info(f"{self.service_name} launch_local")
    return asyncio.create_task(self.processing_loop())

lifespan async #

lifespan(app: FastAPI) -> AsyncGenerator[None, None]

Starts the processing loop when the fastapi app starts.

Source code in llama-agents/llama_deploy/services/agent.py
369
370
371
372
373
374
@asynccontextmanager
async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
    """Starts the processing loop when the fastapi app starts."""
    asyncio.create_task(self.processing_loop())
    yield
    self.running = False

home async #

home() -> Dict[str, str]

Home endpoint. Gets general information about the agent service.

Source code in llama-agents/llama_deploy/services/agent.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
async def home(self) -> Dict[str, str]:
    """Home endpoint. Gets general information about the agent service."""
    tasks = self.agent.list_tasks()

    task_strings = []
    for task in tasks:
        task_output = self.agent.get_task_output(task.task_id)
        status = "COMPLETE" if task_output.is_last else "IN PROGRESS"
        memory_str = "\n".join(
            [f"{x.role}: {x.content}" for x in task.memory.get_all()]
        )
        task_strings.append(f"Agent Task {task.task_id}: {status}\n{memory_str}")

    complete_task_string = "\n".join(task_strings)

    return {
        "service_name": self.service_name,
        "description": self.description,
        "running": str(self.running),
        "step_interval": str(self.step_interval),
        "num_tasks": str(len(tasks)),
        "num_completed_tasks": str(len(self.agent.get_completed_tasks())),
        "prompt": "\n".join([str(x) for x in self.prompt]) if self.prompt else "",
        "type": "agent_service",
        "tasks": complete_task_string,
    }

create_task async #

create_task(task: TaskDefinition) -> Dict[str, str]

Create a task.

Source code in llama-agents/llama_deploy/services/agent.py
403
404
405
406
async def create_task(self, task: TaskDefinition) -> Dict[str, str]:
    """Create a task."""
    task_id = self.agent.create_task(task, task_id=task.task_id)
    return {"task_id": task_id}

get_messages async #

get_messages() -> List[_ChatMessage]

Get messages from the agent.

Source code in llama-agents/llama_deploy/services/agent.py
408
409
410
411
412
async def get_messages(self) -> List[_ChatMessage]:
    """Get messages from the agent."""
    messages = self.agent.chat_history

    return [_ChatMessage.from_chat_message(message) for message in messages]

toggle_agent_running async #

toggle_agent_running(state: Literal['running', 'stopped']) -> Dict[str, bool]

Toggle the agent running state.

Source code in llama-agents/llama_deploy/services/agent.py
414
415
416
417
418
419
420
async def toggle_agent_running(
    self, state: Literal["running", "stopped"]
) -> Dict[str, bool]:
    """Toggle the agent running state."""
    self.running = state == "running"

    return {"running": self.running}

is_worker_running async #

is_worker_running() -> Dict[str, bool]

Check if the agent is running.

Source code in llama-agents/llama_deploy/services/agent.py
422
423
424
async def is_worker_running(self) -> Dict[str, bool]:
    """Check if the agent is running."""
    return {"running": self.running}

reset_agent async #

reset_agent() -> Dict[str, str]

Reset the agent.

Source code in llama-agents/llama_deploy/services/agent.py
426
427
428
429
430
async def reset_agent(self) -> Dict[str, str]:
    """Reset the agent."""
    self.agent.reset()

    return {"message": "Agent reset"}

launch_server async #

launch_server() -> None

Launch the agent as a FastAPI server.

Source code in llama-agents/llama_deploy/services/agent.py
432
433
434
435
436
437
438
439
440
441
442
443
async def launch_server(self) -> None:
    """Launch the agent as a FastAPI server."""
    logger.info(f"Launching {self.service_name} server at {self.host}:{self.port}")
    # uvicorn.run(self._app, host=self.host, port=self.port)

    class CustomServer(uvicorn.Server):
        def install_signal_handlers(self) -> None:
            pass

    cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
    server = CustomServer(cfg)
    await server.serve()

HumanService #

Bases: BaseService

A human service for providing human-in-the-loop assistance.

When launched locally, it will prompt the user for input, which is blocking!

When launched as a server, it will provide an API for creating and handling tasks.

Exposes the following endpoints: - GET /: Get the service information. - POST /process_message: Process a message. - POST /tasks: Create a task. - GET /tasks: Get all tasks. - GET /tasks/{task_id}: Get a task. - POST /tasks/{task_id}/handle: Handle a task.

Attributes:

Name Type Description
service_name str

The name of the service.

description str

The description of the service.

running bool

Whether the service is running.

step_interval float

The interval in seconds to poll for tool call results. Defaults to 0.1s.

host Optional[str]

The host of the service.

port Optional[int]

The port of the service.

Source code in llama-agents/llama_deploy/services/human.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class HumanService(BaseService):
    """A human service for providing human-in-the-loop assistance.

    When launched locally, it will prompt the user for input, which is blocking!

    When launched as a server, it will provide an API for creating and handling tasks.

    Exposes the following endpoints:
    - GET `/`: Get the service information.
    - POST `/process_message`: Process a message.
    - POST `/tasks`: Create a task.
    - GET `/tasks`: Get all tasks.
    - GET `/tasks/{task_id}`: Get a task.
    - POST `/tasks/{task_id}/handle`: Handle a task.

    Attributes:
        service_name (str): The name of the service.
        description (str): The description of the service.
        running (bool): Whether the service is running.
        step_interval (float): The interval in seconds to poll for tool call results. Defaults to 0.1s.
        host (Optional[str]): The host of the service.
        port (Optional[int]): The port of the service.


    """

    model_config = ConfigDict(arbitrary_types_allowed=True, validate_assignment=True)
    service_name: str
    description: str = "Local Human Service."
    running: bool = True
    step_interval: float = 0.1
    fn_input: HumanInputFn = default_human_input_fn
    human_input_prompt: str = (
        HELP_REQUEST_TEMPLATE_STR  # TODO: use PromptMixin, PromptTemplate
    )
    host: Optional[str] = None
    port: Optional[int] = None

    _outstanding_human_tasks: List["HumanTask"] = PrivateAttr()
    _message_queue: BaseMessageQueue = PrivateAttr()
    _app: FastAPI = PrivateAttr()
    _publisher_id: str = PrivateAttr()
    _publish_callback: Optional[PublishCallback] = PrivateAttr()
    _lock: Lock = PrivateAttr()
    _tasks_as_tool_calls: Dict[str, ToolCall] = PrivateAttr()

    def __init__(
        self,
        message_queue: BaseMessageQueue,
        running: bool = True,
        description: str = "Local Human Service",
        service_name: str = "default_human_service",
        publish_callback: Optional[PublishCallback] = None,
        step_interval: float = 0.1,
        fn_input: HumanInputFn = default_human_input_fn,
        human_input_prompt: Optional[str] = None,
        host: Optional[str] = None,
        port: Optional[int] = None,
    ) -> None:
        human_input_prompt = human_input_prompt or HELP_REQUEST_TEMPLATE_STR
        super().__init__(
            running=running,
            description=description,
            service_name=service_name,
            step_interval=step_interval,
            fn_input=fn_input,
            human_input_prompt=human_input_prompt,
            host=host,
            port=port,
        )

        self._outstanding_human_tasks = []
        self._message_queue = message_queue
        self._publisher_id = f"{self.__class__.__qualname__}-{uuid.uuid4()}"
        self._publish_callback = publish_callback
        self._lock = asyncio.Lock()
        self._tasks_as_tool_calls = {}
        self._app = FastAPI(lifespan=self.lifespan)

        self._app.add_api_route("/", self.home, methods=["GET"], tags=["Human Service"])
        self._app.add_api_route(
            "/process_message",
            self.process_message,
            methods=["POST"],
            tags=["Human Service"],
        )

        self._app.add_api_route(
            "/tasks", self.create_task, methods=["POST"], tags=["Tasks"]
        )
        self._app.add_api_route(
            "/tasks", self.get_tasks, methods=["GET"], tags=["Tasks"]
        )
        self._app.add_api_route(
            "/tasks/{task_id}", self.get_task, methods=["GET"], tags=["Tasks"]
        )
        self._app.add_api_route(
            "/tasks/{task_id}/handle",
            self.handle_task,
            methods=["POST"],
            tags=["Tasks"],
        )

    @property
    def service_definition(self) -> ServiceDefinition:
        """Get the service definition."""
        return ServiceDefinition(
            service_name=self.service_name,
            description=self.description,
            prompt=[],
            host=self.host,
            port=self.port,
        )

    @property
    def message_queue(self) -> BaseMessageQueue:
        """The message queue."""
        return self._message_queue

    @property
    def publisher_id(self) -> str:
        """The publisher ID."""
        return self._publisher_id

    @property
    def publish_callback(self) -> Optional[PublishCallback]:
        """The publish callback, if any."""
        return self._publish_callback

    @property
    def lock(self) -> Lock:
        return self._lock

    @property
    def tool_name(self) -> str:
        """The name reserved when this service is used as a tool."""
        return get_tool_name_from_service_name(self.service_name)

    async def processing_loop(self) -> None:
        """The processing loop for the service."""
        logger.info("Processing initiated.")
        while True:
            if not self.running:
                await asyncio.sleep(self.step_interval)
                continue

            async with self.lock:
                try:
                    human_task = self._outstanding_human_tasks.pop(0)
                    task_def = human_task.task_def
                    tool_call = human_task.tool_call
                except IndexError:
                    await asyncio.sleep(self.step_interval)
                    continue

                logger.info(
                    f"Processing request for human help for task: {task_def.task_id}"
                )

                # process req
                prompt = (
                    self.human_input_prompt.format(input_str=task_def.input)
                    if self.human_input_prompt
                    else task_def.input
                )
                result = await self.fn_input(prompt=prompt, task_id=task_def.task_id)

                # create history
                history = [
                    ChatMessage(
                        role=MessageRole.ASSISTANT,
                        content=HELP_REQUEST_TEMPLATE_STR.format(
                            input_str=task_def.input
                        ),
                    ),
                    ChatMessage(role=MessageRole.USER, content=result),
                ]

                if tool_call:
                    await self.publish(
                        QueueMessage(
                            type=tool_call.source_id,
                            action=ActionTypes.COMPLETED_TOOL_CALL,
                            data=ToolCallResult(
                                id_=tool_call.id_,
                                tool_message=ChatMessage(
                                    content=result,
                                    role=MessageRole.TOOL,
                                    additional_kwargs={
                                        "name": tool_call.tool_call_bundle.tool_name,
                                        "tool_call_id": tool_call.id_,
                                    },
                                ),
                                result=result,
                            ).model_dump(),
                        )
                    )
                else:
                    # publish the completed task
                    await self.publish(
                        QueueMessage(
                            type=CONTROL_PLANE_NAME,
                            action=ActionTypes.COMPLETED_TASK,
                            data=TaskResult(
                                task_id=task_def.task_id,
                                history=history,
                                result=result,
                            ).model_dump(),
                        )
                    )

            await asyncio.sleep(self.step_interval)

    class HumanTask(BaseModel):
        """Container for Tasks to be completed by HumanService."""

        task_def: TaskDefinition
        tool_call: Optional[ToolCall] = None

    async def process_message(self, message: QueueMessage) -> None:
        """Process a message received from the message queue."""
        if message.action == ActionTypes.NEW_TASK:
            new_task = NewTask(**message.data or {})
            task_def = new_task.task
            human_task = self.HumanTask(task_def=task_def)
            logger.info(f"Created new task: {task_def.task_id}")
        elif message.action == ActionTypes.NEW_TOOL_CALL:
            task_def = TaskDefinition(**message.data or {})
            tool_call_bundle = ToolCallBundle(
                tool_name=self.tool_name,
                tool_args=(),
                tool_kwargs={"input": task_def.input},
            )
            task_as_tool_call = ToolCall(
                id_=task_def.task_id,
                source_id=message.publisher_id,
                tool_call_bundle=tool_call_bundle,
            )
            human_task = self.HumanTask(task_def=task_def, tool_call=task_as_tool_call)
            logger.info(f"Created new tool call as task: {task_def.task_id}")
        else:
            raise ValueError(f"Unhandled action: {message.action}")
        async with self.lock:
            self._outstanding_human_tasks.append(human_task)

    def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
        """Get the consumer for the service.

        Args:
            remote (bool):
                Whether the consumer is remote. Defaults to False.
                If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
        """
        if remote:
            url = (
                f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
                if self.port
                else f"http://{self.host}{self._app.url_path_for('process_message')}"
            )
            return RemoteMessageConsumer(
                id_=self.publisher_id,
                url=url,
                message_type=self.service_name,
            )

        return CallableMessageConsumer(
            id_=self.publisher_id,
            message_type=self.service_name,
            handler=self.process_message,
        )

    async def launch_local(self) -> asyncio.Task:
        """Launch the service in-process."""
        logger.info(f"{self.service_name} launch_local")
        return asyncio.create_task(self.processing_loop())

    # ---- Server based methods ----

    @asynccontextmanager
    async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
        """Starts the processing loop when the fastapi app starts."""
        asyncio.create_task(self.processing_loop())
        yield
        self.running = False

    async def home(self) -> Dict[str, str]:
        """Get general service information."""
        return {
            "service_name": self.service_name,
            "description": self.description,
            "running": str(self.running),
            "step_interval": str(self.step_interval),
            "num_tasks": str(len(self._outstanding_human_tasks)),
            "tasks": "\n".join([str(task) for task in self._outstanding_human_tasks]),
            "type": "human_service",
        }

    async def create_task(self, task: TaskDefinition) -> Dict[str, str]:
        """Create a task for the human service."""
        async with self.lock:
            human_task = self.HumanTask(task_def=task)
            self._outstanding_human_tasks.append(human_task)
        return {"task_id": task.task_id}

    async def get_tasks(self) -> List[TaskDefinition]:
        """Get all outstanding tasks."""
        async with self.lock:
            return [ht.task_def for ht in self._outstanding_human_tasks]

    async def get_task(self, task_id: str) -> Optional[TaskDefinition]:
        """Get a specific task by ID."""
        async with self.lock:
            for human_task in self._outstanding_human_tasks:
                if human_task.task_def.task_id == task_id:
                    return human_task.task_def
        return None

    async def handle_task(self, task_id: str, result: HumanResponse) -> None:
        """Handle a task by providing a result."""
        async with self.lock:
            for human_task in self._outstanding_human_tasks:
                task_def = human_task.task_def
                if task_def.task_id == task_id:
                    self._outstanding_human_tasks.remove(human_task)
                    break

        logger.info(f"Processing request for human help for task: {task_def.task_id}")

        # create history
        history = [
            ChatMessage(
                role=MessageRole.ASSISTANT,
                content=HELP_REQUEST_TEMPLATE_STR.format(input_str=task_def.input),
            ),
            ChatMessage(role=MessageRole.USER, content=result.result),
        ]

        # publish the completed task
        await self.publish(
            QueueMessage(
                type=CONTROL_PLANE_NAME,
                action=ActionTypes.COMPLETED_TASK,
                data=TaskResult(
                    task_id=task_def.task_id,
                    history=history,
                    result=result.result,
                ).model_dump(),
            )
        )

    async def launch_server(self) -> None:
        """Launch the service as a FastAPI server."""
        logger.info(
            f"Lanching server for {self.service_name} at {self.host}:{self.port}"
        )

        class CustomServer(uvicorn.Server):
            def install_signal_handlers(self) -> None:
                pass

        cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
        server = CustomServer(cfg)
        await server.serve()

    @field_validator("human_input_prompt")
    @classmethod
    def validate_human_input_prompt(cls, v: str) -> str:
        """Check if `input_str` is a prompt key."""
        prompt_params = get_prompt_params(v)
        if "input_str" not in prompt_params:
            raise ValueError(
                "`input_str` should be the only param in the prompt template."
            )
        return v

service_definition property #

service_definition: ServiceDefinition

Get the service definition.

message_queue property #

message_queue: BaseMessageQueue

The message queue.

publisher_id property #

publisher_id: str

The publisher ID.

publish_callback property #

publish_callback: Optional[PublishCallback]

The publish callback, if any.

tool_name property #

tool_name: str

The name reserved when this service is used as a tool.

HumanTask #

Bases: BaseModel

Container for Tasks to be completed by HumanService.

Source code in llama-agents/llama_deploy/services/human.py
282
283
284
285
286
class HumanTask(BaseModel):
    """Container for Tasks to be completed by HumanService."""

    task_def: TaskDefinition
    tool_call: Optional[ToolCall] = None

processing_loop async #

processing_loop() -> None

The processing loop for the service.

Source code in llama-agents/llama_deploy/services/human.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
async def processing_loop(self) -> None:
    """The processing loop for the service."""
    logger.info("Processing initiated.")
    while True:
        if not self.running:
            await asyncio.sleep(self.step_interval)
            continue

        async with self.lock:
            try:
                human_task = self._outstanding_human_tasks.pop(0)
                task_def = human_task.task_def
                tool_call = human_task.tool_call
            except IndexError:
                await asyncio.sleep(self.step_interval)
                continue

            logger.info(
                f"Processing request for human help for task: {task_def.task_id}"
            )

            # process req
            prompt = (
                self.human_input_prompt.format(input_str=task_def.input)
                if self.human_input_prompt
                else task_def.input
            )
            result = await self.fn_input(prompt=prompt, task_id=task_def.task_id)

            # create history
            history = [
                ChatMessage(
                    role=MessageRole.ASSISTANT,
                    content=HELP_REQUEST_TEMPLATE_STR.format(
                        input_str=task_def.input
                    ),
                ),
                ChatMessage(role=MessageRole.USER, content=result),
            ]

            if tool_call:
                await self.publish(
                    QueueMessage(
                        type=tool_call.source_id,
                        action=ActionTypes.COMPLETED_TOOL_CALL,
                        data=ToolCallResult(
                            id_=tool_call.id_,
                            tool_message=ChatMessage(
                                content=result,
                                role=MessageRole.TOOL,
                                additional_kwargs={
                                    "name": tool_call.tool_call_bundle.tool_name,
                                    "tool_call_id": tool_call.id_,
                                },
                            ),
                            result=result,
                        ).model_dump(),
                    )
                )
            else:
                # publish the completed task
                await self.publish(
                    QueueMessage(
                        type=CONTROL_PLANE_NAME,
                        action=ActionTypes.COMPLETED_TASK,
                        data=TaskResult(
                            task_id=task_def.task_id,
                            history=history,
                            result=result,
                        ).model_dump(),
                    )
                )

        await asyncio.sleep(self.step_interval)

process_message async #

process_message(message: QueueMessage) -> None

Process a message received from the message queue.

Source code in llama-agents/llama_deploy/services/human.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
async def process_message(self, message: QueueMessage) -> None:
    """Process a message received from the message queue."""
    if message.action == ActionTypes.NEW_TASK:
        new_task = NewTask(**message.data or {})
        task_def = new_task.task
        human_task = self.HumanTask(task_def=task_def)
        logger.info(f"Created new task: {task_def.task_id}")
    elif message.action == ActionTypes.NEW_TOOL_CALL:
        task_def = TaskDefinition(**message.data or {})
        tool_call_bundle = ToolCallBundle(
            tool_name=self.tool_name,
            tool_args=(),
            tool_kwargs={"input": task_def.input},
        )
        task_as_tool_call = ToolCall(
            id_=task_def.task_id,
            source_id=message.publisher_id,
            tool_call_bundle=tool_call_bundle,
        )
        human_task = self.HumanTask(task_def=task_def, tool_call=task_as_tool_call)
        logger.info(f"Created new tool call as task: {task_def.task_id}")
    else:
        raise ValueError(f"Unhandled action: {message.action}")
    async with self.lock:
        self._outstanding_human_tasks.append(human_task)

as_consumer #

as_consumer(remote: bool = False) -> BaseMessageQueueConsumer

Get the consumer for the service.

Parameters:

Name Type Description Default
remote bool

Whether the consumer is remote. Defaults to False. If True, the consumer will be a RemoteMessageConsumer that uses the process_message endpoint.

False
Source code in llama-agents/llama_deploy/services/human.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
    """Get the consumer for the service.

    Args:
        remote (bool):
            Whether the consumer is remote. Defaults to False.
            If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
    """
    if remote:
        url = (
            f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
            if self.port
            else f"http://{self.host}{self._app.url_path_for('process_message')}"
        )
        return RemoteMessageConsumer(
            id_=self.publisher_id,
            url=url,
            message_type=self.service_name,
        )

    return CallableMessageConsumer(
        id_=self.publisher_id,
        message_type=self.service_name,
        handler=self.process_message,
    )

launch_local async #

launch_local() -> Task

Launch the service in-process.

Source code in llama-agents/llama_deploy/services/human.py
340
341
342
343
async def launch_local(self) -> asyncio.Task:
    """Launch the service in-process."""
    logger.info(f"{self.service_name} launch_local")
    return asyncio.create_task(self.processing_loop())

lifespan async #

lifespan(app: FastAPI) -> AsyncGenerator[None, None]

Starts the processing loop when the fastapi app starts.

Source code in llama-agents/llama_deploy/services/human.py
347
348
349
350
351
352
@asynccontextmanager
async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
    """Starts the processing loop when the fastapi app starts."""
    asyncio.create_task(self.processing_loop())
    yield
    self.running = False

home async #

home() -> Dict[str, str]

Get general service information.

Source code in llama-agents/llama_deploy/services/human.py
354
355
356
357
358
359
360
361
362
363
364
async def home(self) -> Dict[str, str]:
    """Get general service information."""
    return {
        "service_name": self.service_name,
        "description": self.description,
        "running": str(self.running),
        "step_interval": str(self.step_interval),
        "num_tasks": str(len(self._outstanding_human_tasks)),
        "tasks": "\n".join([str(task) for task in self._outstanding_human_tasks]),
        "type": "human_service",
    }

create_task async #

create_task(task: TaskDefinition) -> Dict[str, str]

Create a task for the human service.

Source code in llama-agents/llama_deploy/services/human.py
366
367
368
369
370
371
async def create_task(self, task: TaskDefinition) -> Dict[str, str]:
    """Create a task for the human service."""
    async with self.lock:
        human_task = self.HumanTask(task_def=task)
        self._outstanding_human_tasks.append(human_task)
    return {"task_id": task.task_id}

get_tasks async #

get_tasks() -> List[TaskDefinition]

Get all outstanding tasks.

Source code in llama-agents/llama_deploy/services/human.py
373
374
375
376
async def get_tasks(self) -> List[TaskDefinition]:
    """Get all outstanding tasks."""
    async with self.lock:
        return [ht.task_def for ht in self._outstanding_human_tasks]

get_task async #

get_task(task_id: str) -> Optional[TaskDefinition]

Get a specific task by ID.

Source code in llama-agents/llama_deploy/services/human.py
378
379
380
381
382
383
384
async def get_task(self, task_id: str) -> Optional[TaskDefinition]:
    """Get a specific task by ID."""
    async with self.lock:
        for human_task in self._outstanding_human_tasks:
            if human_task.task_def.task_id == task_id:
                return human_task.task_def
    return None

handle_task async #

handle_task(task_id: str, result: HumanResponse) -> None

Handle a task by providing a result.

Source code in llama-agents/llama_deploy/services/human.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
async def handle_task(self, task_id: str, result: HumanResponse) -> None:
    """Handle a task by providing a result."""
    async with self.lock:
        for human_task in self._outstanding_human_tasks:
            task_def = human_task.task_def
            if task_def.task_id == task_id:
                self._outstanding_human_tasks.remove(human_task)
                break

    logger.info(f"Processing request for human help for task: {task_def.task_id}")

    # create history
    history = [
        ChatMessage(
            role=MessageRole.ASSISTANT,
            content=HELP_REQUEST_TEMPLATE_STR.format(input_str=task_def.input),
        ),
        ChatMessage(role=MessageRole.USER, content=result.result),
    ]

    # publish the completed task
    await self.publish(
        QueueMessage(
            type=CONTROL_PLANE_NAME,
            action=ActionTypes.COMPLETED_TASK,
            data=TaskResult(
                task_id=task_def.task_id,
                history=history,
                result=result.result,
            ).model_dump(),
        )
    )

launch_server async #

launch_server() -> None

Launch the service as a FastAPI server.

Source code in llama-agents/llama_deploy/services/human.py
419
420
421
422
423
424
425
426
427
428
429
430
431
async def launch_server(self) -> None:
    """Launch the service as a FastAPI server."""
    logger.info(
        f"Lanching server for {self.service_name} at {self.host}:{self.port}"
    )

    class CustomServer(uvicorn.Server):
        def install_signal_handlers(self) -> None:
            pass

    cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
    server = CustomServer(cfg)
    await server.serve()

validate_human_input_prompt classmethod #

validate_human_input_prompt(v: str) -> str

Check if input_str is a prompt key.

Source code in llama-agents/llama_deploy/services/human.py
433
434
435
436
437
438
439
440
441
442
@field_validator("human_input_prompt")
@classmethod
def validate_human_input_prompt(cls, v: str) -> str:
    """Check if `input_str` is a prompt key."""
    prompt_params = get_prompt_params(v)
    if "input_str" not in prompt_params:
        raise ValueError(
            "`input_str` should be the only param in the prompt template."
        )
    return v

ToolService #

Bases: BaseService

A service that executes tools remotely for other services.

This service is responsible for executing tools remotely for other services and agents.

Exposes the following endpoints: - GET /: Home endpoint. - POST /tool_call: Create a tool call. - GET /tool: Get a tool by name. - POST /process_message: Process a message.

Attributes:

Name Type Description
tools List[AsyncBaseTool]

A list of tools to execute.

description str

The description of the tool service.

running bool

Whether the service is running.

step_interval float

The interval in seconds to poll for tool call results. Defaults to 0.1s.

host Optional[str]

The host of the service.

port Optional[int]

The port of the service.

Examples:

from llama_deploy import ToolService, MetaServiceTool, SimpleMessageQueue
from llama_index.core.llms import OpenAI
from llama_index.core.agent import FunctionCallingAgentWorker

message_queue = SimpleMessageQueue()

tool_service = ToolService(
    message_queue=message_queue,
    tools=[tool],
    running=True,
    step_interval=0.5,
)

# create a meta tool and use it in any other agent
# this allows remote execution of that tool
meta_tool = MetaServiceTool(
    tool_metadata=tool.metadata,
    message_queue=message_queue,
    tool_service_name=tool_service.service_name,
)
agent = FunctionCallingAgentWorker.from_tools(
    [meta_tool],
    llm=OpenAI(),
).as_agent()
Source code in llama-agents/llama_deploy/services/tool.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
class ToolService(BaseService):
    """A service that executes tools remotely for other services.

    This service is responsible for executing tools remotely for other services and agents.

    Exposes the following endpoints:
    - GET `/`: Home endpoint.
    - POST `/tool_call`: Create a tool call.
    - GET `/tool`: Get a tool by name.
    - POST `/process_message`: Process a message.

    Attributes:
        tools (List[AsyncBaseTool]):
            A list of tools to execute.
        description (str):
            The description of the tool service.
        running (bool):
            Whether the service is running.
        step_interval (float):
            The interval in seconds to poll for tool call results. Defaults to 0.1s.
        host (Optional[str]):
            The host of the service.
        port (Optional[int]):
            The port of the service.

    Examples:
        ```python
        from llama_deploy import ToolService, MetaServiceTool, SimpleMessageQueue
        from llama_index.core.llms import OpenAI
        from llama_index.core.agent import FunctionCallingAgentWorker

        message_queue = SimpleMessageQueue()

        tool_service = ToolService(
            message_queue=message_queue,
            tools=[tool],
            running=True,
            step_interval=0.5,
        )

        # create a meta tool and use it in any other agent
        # this allows remote execution of that tool
        meta_tool = MetaServiceTool(
            tool_metadata=tool.metadata,
            message_queue=message_queue,
            tool_service_name=tool_service.service_name,
        )
        agent = FunctionCallingAgentWorker.from_tools(
            [meta_tool],
            llm=OpenAI(),
        ).as_agent()
        ```
    """

    service_name: str
    tools: List[AsyncBaseTool]
    description: str = "Local Tool Service."
    running: bool = True
    step_interval: float = 0.1
    host: Optional[str] = None
    port: Optional[int] = None

    _outstanding_tool_calls: Dict[str, ToolCall] = PrivateAttr()
    _message_queue: BaseMessageQueue = PrivateAttr()
    _app: FastAPI = PrivateAttr()
    _publisher_id: str = PrivateAttr()
    _publish_callback: Optional[PublishCallback] = PrivateAttr()
    _lock: Lock = PrivateAttr()

    def __init__(
        self,
        message_queue: BaseMessageQueue,
        tools: Optional[List[BaseTool]] = None,
        running: bool = True,
        description: str = "Tool Server",
        service_name: str = "default_tool_service",
        publish_callback: Optional[PublishCallback] = None,
        step_interval: float = 0.1,
        host: Optional[str] = None,
        port: Optional[int] = None,
    ) -> None:
        tools = tools or []
        tools = [adapt_to_async_tool(t) for t in tools]
        super().__init__(
            tools=tools,
            running=running,
            description=description,
            service_name=service_name,
            step_interval=step_interval,
            host=host,
            port=port,
        )

        self._outstanding_tool_calls = {}
        self._message_queue = message_queue
        self._publisher_id = f"{self.__class__.__qualname__}-{uuid.uuid4()}"
        self._publish_callback = publish_callback
        self._lock = asyncio.Lock()
        self._app = FastAPI(lifespan=self.lifespan)

        self._app.add_api_route("/", self.home, methods=["GET"], tags=["Tool Service"])

        self._app.add_api_route(
            "/tool_call", self.create_tool_call, methods=["POST"], tags=["Tool Call"]
        )

        self._app.add_api_route(
            "/tool", self.get_tool_by_name, methods=["GET"], tags=["Tool"]
        )

        self._app.add_api_route(
            "/process_message",
            self.process_message,
            methods=["POST"],
            tags=["Message Processing"],
        )

    @property
    def service_definition(self) -> ServiceDefinition:
        """The service definition."""
        return ServiceDefinition(
            service_name=self.service_name,
            description=self.description,
            prompt=[],
            host=self.host,
            port=self.port,
        )

    @property
    def message_queue(self) -> BaseMessageQueue:
        """The message queue."""
        return self._message_queue

    @property
    def publisher_id(self) -> str:
        """The publisher ID."""
        return self._publisher_id

    @property
    def publish_callback(self) -> Optional[PublishCallback]:
        """The publish callback, if any."""
        return self._publish_callback

    @property
    def lock(self) -> Lock:
        return self._lock

    async def processing_loop(self) -> None:
        """The processing loop for the service."""
        logger.info("Processing initiated.")
        while True:
            if not self.running:
                await asyncio.sleep(self.step_interval)
                continue

            async with self.lock:
                current_tool_calls: List[ToolCall] = [
                    *self._outstanding_tool_calls.values()
                ]
            for tool_call in current_tool_calls:
                tool = get_function_by_name(
                    self.tools, tool_call.tool_call_bundle.tool_name
                )

                logger.info(
                    f"Processing tool call id {tool_call.id_} with {tool.metadata.name}"
                )
                tool_output = await tool.acall(
                    *tool_call.tool_call_bundle.tool_args,
                    **tool_call.tool_call_bundle.tool_kwargs,
                )

                # execute function call
                tool_message = ChatMessage(
                    content=str(tool_output),
                    role=MessageRole.TOOL,
                    additional_kwargs={
                        "name": tool_call.tool_call_bundle.tool_name,
                        "tool_call_id": tool_call.id_,
                    },
                )

                # publish the completed task
                await self.publish(
                    QueueMessage(
                        type=tool_call.source_id,
                        action=ActionTypes.COMPLETED_TOOL_CALL,
                        data=ToolCallResult(
                            id_=tool_call.id_,
                            tool_message=tool_message,
                            result=str(tool_output),
                        ).model_dump(),
                    )
                )

                # clean up
                async with self.lock:
                    del self._outstanding_tool_calls[tool_call.id_]

            await asyncio.sleep(self.step_interval)

    async def process_message(self, message: QueueMessage) -> None:
        """Process a message."""
        if message.action == ActionTypes.NEW_TOOL_CALL:
            tool_call_data = {"source_id": message.publisher_id}
            tool_call_data.update(message.data or {})
            tool_call = ToolCall(**tool_call_data)
            async with self.lock:
                self._outstanding_tool_calls.update({tool_call.id_: tool_call})
        else:
            raise ValueError(f"Unhandled action: {message.action}")

    def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
        """Get the consumer for the service.

        Args:
            remote (bool):
                Whether the consumer is remote. Defaults to False.
                If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
        """
        if remote:
            url = (
                f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
                if self.port
                else f"http://{self.host}{self._app.url_path_for('process_message')}"
            )
            return RemoteMessageConsumer(
                id_=self.publisher_id,
                url=url,
                message_type=self.service_name,
            )
        return CallableMessageConsumer(
            id_=self.publisher_id,
            message_type=self.service_name,
            handler=self.process_message,
        )

    async def launch_local(self) -> asyncio.Task:
        """Launch the service in-process."""
        return asyncio.create_task(self.processing_loop())

    # ---- Server based methods ----

    @asynccontextmanager
    async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
        """Starts the processing loop when the fastapi app starts."""
        asyncio.create_task(self.processing_loop())
        yield
        self.running = False

    async def home(self) -> Dict[str, str]:
        """Home endpoint. Returns the general information about the service."""
        return {
            "service_name": self.service_name,
            "description": self.description,
            "running": str(self.running),
            "step_interval": str(self.step_interval),
            "num_tools": str(len(self.tools)),
            "num_outstanding_tool_calls": str(len(self._outstanding_tool_calls)),
            "tool_calls": "\n".join(
                [str(tool_call) for tool_call in self._outstanding_tool_calls.values()]
            ),
            "type": "tool_service",
        }

    async def create_tool_call(self, tool_call: ToolCall) -> Dict[str, str]:
        """Create a tool call."""
        async with self.lock:
            self._outstanding_tool_calls.update({tool_call.id_: tool_call})
        return {"tool_call_id": tool_call.id_}

    async def get_tool_by_name(self, name: str) -> Dict[str, Any]:
        """Get a tool by name."""
        name_to_tool = {tool.metadata.name: tool for tool in self.tools}
        if name not in name_to_tool:
            raise ValueError(f"Tool with name {name} not found")
        return {"tool_metadata": name_to_tool[name].metadata}

    async def launch_server(self) -> None:
        """Launch the service as a FastAPI server."""
        logger.info(f"Launching tool service server at {self.host}:{self.port}")
        # uvicorn.run(self._app, host=self.host, port=self.port)

        class CustomServer(uvicorn.Server):
            def install_signal_handlers(self) -> None:
                pass

        cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
        server = CustomServer(cfg)
        await server.serve()

service_definition property #

service_definition: ServiceDefinition

The service definition.

message_queue property #

message_queue: BaseMessageQueue

The message queue.

publisher_id property #

publisher_id: str

The publisher ID.

publish_callback property #

publish_callback: Optional[PublishCallback]

The publish callback, if any.

processing_loop async #

processing_loop() -> None

The processing loop for the service.

Source code in llama-agents/llama_deploy/services/tool.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
async def processing_loop(self) -> None:
    """The processing loop for the service."""
    logger.info("Processing initiated.")
    while True:
        if not self.running:
            await asyncio.sleep(self.step_interval)
            continue

        async with self.lock:
            current_tool_calls: List[ToolCall] = [
                *self._outstanding_tool_calls.values()
            ]
        for tool_call in current_tool_calls:
            tool = get_function_by_name(
                self.tools, tool_call.tool_call_bundle.tool_name
            )

            logger.info(
                f"Processing tool call id {tool_call.id_} with {tool.metadata.name}"
            )
            tool_output = await tool.acall(
                *tool_call.tool_call_bundle.tool_args,
                **tool_call.tool_call_bundle.tool_kwargs,
            )

            # execute function call
            tool_message = ChatMessage(
                content=str(tool_output),
                role=MessageRole.TOOL,
                additional_kwargs={
                    "name": tool_call.tool_call_bundle.tool_name,
                    "tool_call_id": tool_call.id_,
                },
            )

            # publish the completed task
            await self.publish(
                QueueMessage(
                    type=tool_call.source_id,
                    action=ActionTypes.COMPLETED_TOOL_CALL,
                    data=ToolCallResult(
                        id_=tool_call.id_,
                        tool_message=tool_message,
                        result=str(tool_output),
                    ).model_dump(),
                )
            )

            # clean up
            async with self.lock:
                del self._outstanding_tool_calls[tool_call.id_]

        await asyncio.sleep(self.step_interval)

process_message async #

process_message(message: QueueMessage) -> None

Process a message.

Source code in llama-agents/llama_deploy/services/tool.py
236
237
238
239
240
241
242
243
244
245
async def process_message(self, message: QueueMessage) -> None:
    """Process a message."""
    if message.action == ActionTypes.NEW_TOOL_CALL:
        tool_call_data = {"source_id": message.publisher_id}
        tool_call_data.update(message.data or {})
        tool_call = ToolCall(**tool_call_data)
        async with self.lock:
            self._outstanding_tool_calls.update({tool_call.id_: tool_call})
    else:
        raise ValueError(f"Unhandled action: {message.action}")

as_consumer #

as_consumer(remote: bool = False) -> BaseMessageQueueConsumer

Get the consumer for the service.

Parameters:

Name Type Description Default
remote bool

Whether the consumer is remote. Defaults to False. If True, the consumer will be a RemoteMessageConsumer that uses the process_message endpoint.

False
Source code in llama-agents/llama_deploy/services/tool.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
    """Get the consumer for the service.

    Args:
        remote (bool):
            Whether the consumer is remote. Defaults to False.
            If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
    """
    if remote:
        url = (
            f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
            if self.port
            else f"http://{self.host}{self._app.url_path_for('process_message')}"
        )
        return RemoteMessageConsumer(
            id_=self.publisher_id,
            url=url,
            message_type=self.service_name,
        )
    return CallableMessageConsumer(
        id_=self.publisher_id,
        message_type=self.service_name,
        handler=self.process_message,
    )

launch_local async #

launch_local() -> Task

Launch the service in-process.

Source code in llama-agents/llama_deploy/services/tool.py
272
273
274
async def launch_local(self) -> asyncio.Task:
    """Launch the service in-process."""
    return asyncio.create_task(self.processing_loop())

lifespan async #

lifespan(app: FastAPI) -> AsyncGenerator[None, None]

Starts the processing loop when the fastapi app starts.

Source code in llama-agents/llama_deploy/services/tool.py
278
279
280
281
282
283
@asynccontextmanager
async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
    """Starts the processing loop when the fastapi app starts."""
    asyncio.create_task(self.processing_loop())
    yield
    self.running = False

home async #

home() -> Dict[str, str]

Home endpoint. Returns the general information about the service.

Source code in llama-agents/llama_deploy/services/tool.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
async def home(self) -> Dict[str, str]:
    """Home endpoint. Returns the general information about the service."""
    return {
        "service_name": self.service_name,
        "description": self.description,
        "running": str(self.running),
        "step_interval": str(self.step_interval),
        "num_tools": str(len(self.tools)),
        "num_outstanding_tool_calls": str(len(self._outstanding_tool_calls)),
        "tool_calls": "\n".join(
            [str(tool_call) for tool_call in self._outstanding_tool_calls.values()]
        ),
        "type": "tool_service",
    }

create_tool_call async #

create_tool_call(tool_call: ToolCall) -> Dict[str, str]

Create a tool call.

Source code in llama-agents/llama_deploy/services/tool.py
300
301
302
303
304
async def create_tool_call(self, tool_call: ToolCall) -> Dict[str, str]:
    """Create a tool call."""
    async with self.lock:
        self._outstanding_tool_calls.update({tool_call.id_: tool_call})
    return {"tool_call_id": tool_call.id_}

get_tool_by_name async #

get_tool_by_name(name: str) -> Dict[str, Any]

Get a tool by name.

Source code in llama-agents/llama_deploy/services/tool.py
306
307
308
309
310
311
async def get_tool_by_name(self, name: str) -> Dict[str, Any]:
    """Get a tool by name."""
    name_to_tool = {tool.metadata.name: tool for tool in self.tools}
    if name not in name_to_tool:
        raise ValueError(f"Tool with name {name} not found")
    return {"tool_metadata": name_to_tool[name].metadata}

launch_server async #

launch_server() -> None

Launch the service as a FastAPI server.

Source code in llama-agents/llama_deploy/services/tool.py
313
314
315
316
317
318
319
320
321
322
323
324
async def launch_server(self) -> None:
    """Launch the service as a FastAPI server."""
    logger.info(f"Launching tool service server at {self.host}:{self.port}")
    # uvicorn.run(self._app, host=self.host, port=self.port)

    class CustomServer(uvicorn.Server):
        def install_signal_handlers(self) -> None:
            pass

    cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
    server = CustomServer(cfg)
    await server.serve()

ComponentService #

Bases: BaseService

Component service.

Wraps a query pipeline component into a service.

Exposes the following endpoints: - GET /: Home endpoint. - POST /process_message: Process a message.

Attributes:

Name Type Description
component Any

The query pipeline component.

description str

The description of the service.

running bool

Whether the service is running.

step_interval float

The interval in seconds to poll for tool call results. Defaults to 0.1s.

host Optional[str]

The host of the service.

port Optional[int]

The port of the service.

raise_exceptions bool

Whether to raise exceptions.

Examples:

from llama_deploy import ComponentService
from llama_index.core.query_pipeline import QueryComponent

component_service = ComponentService(
    component=query_component,
    message_queue=message_queue,
    description="component_service",
    service_name="my_component_service",
)
Source code in llama-agents/llama_deploy/services/component.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
class ComponentService(BaseService):
    """Component service.

    Wraps a query pipeline component into a service.

    Exposes the following endpoints:
    - GET `/`: Home endpoint.
    - POST `/process_message`: Process a message.

    Attributes:
        component (Any): The query pipeline component.
        description (str): The description of the service.
        running (bool): Whether the service is running.
        step_interval (float): The interval in seconds to poll for tool call results. Defaults to 0.1s.
        host (Optional[str]): The host of the service.
        port (Optional[int]): The port of the service.
        raise_exceptions (bool): Whether to raise exceptions.

    Examples:
        ```python
        from llama_deploy import ComponentService
        from llama_index.core.query_pipeline import QueryComponent

        component_service = ComponentService(
            component=query_component,
            message_queue=message_queue,
            description="component_service",
            service_name="my_component_service",
        )
        ```
    """

    service_name: str
    component: Any

    description: str = "Component service."
    running: bool = True
    step_interval: float = 0.1
    host: Optional[str] = None
    port: Optional[int] = None
    raise_exceptions: bool = False

    _message_queue: BaseMessageQueue = PrivateAttr()
    _app: FastAPI = PrivateAttr()
    _publisher_id: str = PrivateAttr()
    _publish_callback: Optional[PublishCallback] = PrivateAttr()
    _lock: asyncio.Lock = PrivateAttr()
    _outstanding_calls: Dict[str, Any] = PrivateAttr()

    def __init__(
        self,
        component: Any,
        message_queue: BaseMessageQueue,
        running: bool = True,
        description: str = "Component Server",
        service_name: str = "default_component_service",
        publish_callback: Optional[PublishCallback] = None,
        step_interval: float = 0.1,
        host: Optional[str] = None,
        port: Optional[int] = None,
        raise_exceptions: bool = False,
    ) -> None:
        # HACK: QueryComponent is on pydantic v1
        if not isinstance(component, QueryComponent):
            raise ValueError("Component must be a QueryComponent")

        super().__init__(
            component=component,
            running=running,
            description=description,
            service_name=service_name,
            step_interval=step_interval,
            host=host,
            port=port,
            raise_exceptions=raise_exceptions,
        )

        self._lock = asyncio.Lock()
        # self._tasks_as_tool_calls = {}
        self._message_queue = message_queue
        self._publisher_id = f"{self.__class__.__qualname__}-{uuid.uuid4()}"
        self._publish_callback = publish_callback

        self._outstanding_calls: Dict[str, Any] = {}

        self._app = FastAPI(lifespan=self.lifespan)

        self._app.add_api_route(
            "/", self.home, methods=["GET"], tags=["Component Service"]
        )

        self._app.add_api_route(
            "/process_message",
            self.process_message,
            methods=["POST"],
            tags=["Message Processing"],
        )

    @property
    def service_definition(self) -> ServiceDefinition:
        """Service definition."""
        return ServiceDefinition(
            service_name=self.service_name,
            description=self.description,
            host=self.host,
            port=self.port,
        )

    @property
    def message_queue(self) -> BaseMessageQueue:
        """Message queue."""
        return self._message_queue

    @property
    def publisher_id(self) -> str:
        """Publisher ID."""
        return self._publisher_id

    @property
    def publish_callback(self) -> Optional[PublishCallback]:
        """Publish callback, if any."""
        return self._publish_callback

    @property
    def lock(self) -> asyncio.Lock:
        return self._lock

    async def processing_loop(self) -> None:
        """The processing loop for the service."""
        logger.info("Processing initiated.")
        while True:
            if not self.running:
                await asyncio.sleep(self.step_interval)
                continue

            async with self.lock:
                current_calls = [(t, c) for t, c in self._outstanding_calls.items()]

            for task_id, current_call in current_calls:
                output_dict = await self.component.arun_component(**current_call)

                await self.message_queue.publish(
                    QueueMessage(
                        type=CONTROL_PLANE_NAME,
                        action=ActionTypes.COMPLETED_TASK,
                        data=TaskResult(
                            task_id=task_id,
                            history=[],
                            result=json.dumps(output_dict),
                            data=output_dict,
                        ).model_dump(),
                    )
                )

                # clean up
                async with self.lock:
                    del self._outstanding_calls[task_id]

            await asyncio.sleep(self.step_interval)

    async def process_message(self, message: QueueMessage) -> None:
        """Process a message received from the message queue."""
        if message.action == ActionTypes.NEW_TASK:
            new_task = NewTask(**message.data or {})
            task_def = new_task.task
            async with self.lock:
                self._outstanding_calls[task_def.task_id] = new_task.state[
                    "__input_dict__"
                ]
        else:
            raise ValueError(f"Unhandled action: {message.action}")

    def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
        """Get the consumer for the message queue.

        Args:
            remote (bool):
                Whether the consumer is remote. Defaults to False.
                If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
        """
        if remote:
            url = (
                f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
                if self.port
                else f"http://{self.host}{self._app.url_path_for('process_message')}"
            )
            return RemoteMessageConsumer(
                id_=self.publisher_id,
                url=url,
                message_type=self.service_name,
            )

        return CallableMessageConsumer(
            id_=self.publisher_id,
            message_type=self.service_name,
            handler=self.process_message,
        )

    async def launch_local(self) -> asyncio.Task:
        """Launch the service in-process."""
        logger.info(f"{self.service_name} launch_local")
        return asyncio.create_task(self.processing_loop())

    # ---- Server based methods ----

    @asynccontextmanager
    async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
        """Starts the processing loop when the fastapi app starts."""
        asyncio.create_task(self.processing_loop())
        yield
        self.running = False

    async def home(self) -> Dict[str, str]:
        """Home endpoint. Returns general information about the service."""
        return {
            "service_name": self.service_name,
            "description": self.description,
            "running": str(self.running),
            "step_interval": str(self.step_interval),
            "num_outstanding_calls": str(len(self._outstanding_calls)),
            "type": "component_service",
        }

    async def launch_server(self) -> None:
        """Launch the service as a FastAPI server."""
        logger.info(f"Launching {self.service_name} server at {self.host}:{self.port}")
        # uvicorn.run(self._app, host=self.host, port=self.port)

        class CustomServer(uvicorn.Server):
            def install_signal_handlers(self) -> None:
                pass

        cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
        server = CustomServer(cfg)
        await server.serve()

service_definition property #

service_definition: ServiceDefinition

Service definition.

message_queue property #

message_queue: BaseMessageQueue

Message queue.

publisher_id property #

publisher_id: str

Publisher ID.

publish_callback property #

publish_callback: Optional[PublishCallback]

Publish callback, if any.

processing_loop async #

processing_loop() -> None

The processing loop for the service.

Source code in llama-agents/llama_deploy/services/component.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
async def processing_loop(self) -> None:
    """The processing loop for the service."""
    logger.info("Processing initiated.")
    while True:
        if not self.running:
            await asyncio.sleep(self.step_interval)
            continue

        async with self.lock:
            current_calls = [(t, c) for t, c in self._outstanding_calls.items()]

        for task_id, current_call in current_calls:
            output_dict = await self.component.arun_component(**current_call)

            await self.message_queue.publish(
                QueueMessage(
                    type=CONTROL_PLANE_NAME,
                    action=ActionTypes.COMPLETED_TASK,
                    data=TaskResult(
                        task_id=task_id,
                        history=[],
                        result=json.dumps(output_dict),
                        data=output_dict,
                    ).model_dump(),
                )
            )

            # clean up
            async with self.lock:
                del self._outstanding_calls[task_id]

        await asyncio.sleep(self.step_interval)

process_message async #

process_message(message: QueueMessage) -> None

Process a message received from the message queue.

Source code in llama-agents/llama_deploy/services/component.py
190
191
192
193
194
195
196
197
198
199
200
async def process_message(self, message: QueueMessage) -> None:
    """Process a message received from the message queue."""
    if message.action == ActionTypes.NEW_TASK:
        new_task = NewTask(**message.data or {})
        task_def = new_task.task
        async with self.lock:
            self._outstanding_calls[task_def.task_id] = new_task.state[
                "__input_dict__"
            ]
    else:
        raise ValueError(f"Unhandled action: {message.action}")

as_consumer #

as_consumer(remote: bool = False) -> BaseMessageQueueConsumer

Get the consumer for the message queue.

Parameters:

Name Type Description Default
remote bool

Whether the consumer is remote. Defaults to False. If True, the consumer will be a RemoteMessageConsumer that uses the process_message endpoint.

False
Source code in llama-agents/llama_deploy/services/component.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
    """Get the consumer for the message queue.

    Args:
        remote (bool):
            Whether the consumer is remote. Defaults to False.
            If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
    """
    if remote:
        url = (
            f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
            if self.port
            else f"http://{self.host}{self._app.url_path_for('process_message')}"
        )
        return RemoteMessageConsumer(
            id_=self.publisher_id,
            url=url,
            message_type=self.service_name,
        )

    return CallableMessageConsumer(
        id_=self.publisher_id,
        message_type=self.service_name,
        handler=self.process_message,
    )

launch_local async #

launch_local() -> Task

Launch the service in-process.

Source code in llama-agents/llama_deploy/services/component.py
228
229
230
231
async def launch_local(self) -> asyncio.Task:
    """Launch the service in-process."""
    logger.info(f"{self.service_name} launch_local")
    return asyncio.create_task(self.processing_loop())

lifespan async #

lifespan(app: FastAPI) -> AsyncGenerator[None, None]

Starts the processing loop when the fastapi app starts.

Source code in llama-agents/llama_deploy/services/component.py
235
236
237
238
239
240
@asynccontextmanager
async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
    """Starts the processing loop when the fastapi app starts."""
    asyncio.create_task(self.processing_loop())
    yield
    self.running = False

home async #

home() -> Dict[str, str]

Home endpoint. Returns general information about the service.

Source code in llama-agents/llama_deploy/services/component.py
242
243
244
245
246
247
248
249
250
251
async def home(self) -> Dict[str, str]:
    """Home endpoint. Returns general information about the service."""
    return {
        "service_name": self.service_name,
        "description": self.description,
        "running": str(self.running),
        "step_interval": str(self.step_interval),
        "num_outstanding_calls": str(len(self._outstanding_calls)),
        "type": "component_service",
    }

launch_server async #

launch_server() -> None

Launch the service as a FastAPI server.

Source code in llama-agents/llama_deploy/services/component.py
253
254
255
256
257
258
259
260
261
262
263
264
async def launch_server(self) -> None:
    """Launch the service as a FastAPI server."""
    logger.info(f"Launching {self.service_name} server at {self.host}:{self.port}")
    # uvicorn.run(self._app, host=self.host, port=self.port)

    class CustomServer(uvicorn.Server):
        def install_signal_handlers(self) -> None:
            pass

    cfg = uvicorn.Config(self._app, host=self.host, port=self.port)
    server = CustomServer(cfg)
    await server.serve()

WorkflowService #

Bases: BaseService

Workflow service.

Wraps a llama-index workflow into a service.

Exposes the following endpoints: - GET /: Home endpoint. - POST /process_message: Process a message.

Attributes:

Name Type Description
workflow Workflow

The workflow itself.

description str

The description of the service.

running bool

Whether the service is running.

step_interval float

The interval in seconds to poll for tool call results. Defaults to 0.1s.

host Optional[str]

The host of the service.

port Optional[int]

The port of the service.

raise_exceptions bool

Whether to raise exceptions.

Examples:

from llama_deploy import WorkflowService
from llama_index.core.workflow import Workflow

workflow_service = WorkflowService(
    workflow,
    message_queue=message_queue,
    description="workflow_service",
    service_name="my_workflow_service",
)
Source code in llama-agents/llama_deploy/services/workflow.py
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
class WorkflowService(BaseService):
    """Workflow service.

    Wraps a llama-index workflow into a service.

    Exposes the following endpoints:
    - GET `/`: Home endpoint.
    - POST `/process_message`: Process a message.

    Attributes:
        workflow (Workflow): The workflow itself.
        description (str): The description of the service.
        running (bool): Whether the service is running.
        step_interval (float): The interval in seconds to poll for tool call results. Defaults to 0.1s.
        host (Optional[str]): The host of the service.
        port (Optional[int]): The port of the service.
        raise_exceptions (bool): Whether to raise exceptions.

    Examples:
        ```python
        from llama_deploy import WorkflowService
        from llama_index.core.workflow import Workflow

        workflow_service = WorkflowService(
            workflow,
            message_queue=message_queue,
            description="workflow_service",
            service_name="my_workflow_service",
        )
        ```
    """

    service_name: str
    workflow: Workflow

    description: str = "Workflow service."
    running: bool = True
    step_interval: float = 0.1
    host: Optional[str] = None
    port: Optional[int] = None
    internal_host: Optional[str] = None
    internal_port: Optional[int] = None
    raise_exceptions: bool = False

    _message_queue: BaseMessageQueue = PrivateAttr()
    _app: FastAPI = PrivateAttr()
    _publisher_id: str = PrivateAttr()
    _publish_callback: Optional[PublishCallback] = PrivateAttr()
    _lock: asyncio.Lock = PrivateAttr()
    _outstanding_calls: Dict[str, WorkflowState] = PrivateAttr()

    def __init__(
        self,
        workflow: Workflow,
        message_queue: BaseMessageQueue,
        running: bool = True,
        description: str = "Component Server",
        service_name: str = "default_workflow_service",
        publish_callback: Optional[PublishCallback] = None,
        step_interval: float = 0.1,
        host: Optional[str] = None,
        port: Optional[int] = None,
        internal_host: Optional[str] = None,
        internal_port: Optional[int] = None,
        raise_exceptions: bool = False,
    ) -> None:
        super().__init__(
            workflow=workflow,
            running=running,
            description=description,
            service_name=service_name,
            step_interval=step_interval,
            host=host,
            port=port,
            internal_host=internal_host,
            internal_port=internal_port,
            raise_exceptions=raise_exceptions,
        )

        self._lock = asyncio.Lock()
        self._message_queue = message_queue
        self._publisher_id = f"{self.__class__.__qualname__}-{uuid.uuid4()}"
        self._publish_callback = publish_callback

        self._outstanding_calls: Dict[str, WorkflowState] = {}

        self._app = FastAPI(lifespan=self.lifespan)

        self._app.add_api_route(
            "/", self.home, methods=["GET"], tags=["Workflow Service"]
        )

        self._app.add_api_route(
            "/process_message",
            self.process_message,
            methods=["POST"],
            tags=["Message Processing"],
        )

    @property
    def service_definition(self) -> ServiceDefinition:
        """Service definition."""
        return ServiceDefinition(
            service_name=self.service_name,
            description=self.description,
            host=self.host,
            port=self.port,
        )

    @property
    def message_queue(self) -> BaseMessageQueue:
        """Message queue."""
        return self._message_queue

    @property
    def publisher_id(self) -> str:
        """Publisher ID."""
        return self._publisher_id

    @property
    def publish_callback(self) -> Optional[PublishCallback]:
        """Publish callback, if any."""
        return self._publish_callback

    @property
    def lock(self) -> asyncio.Lock:
        return self._lock

    def load_workflow_state(self, workflow: Workflow, state: WorkflowState) -> Workflow:
        """Fork the workflow with the given state.

        TODO: Support managing the workflow state.
        """
        context_hash = state.hash
        context_str = state.state
        if not context_str:
            return workflow

        if hash(context_str + hash_secret) != context_hash:
            raise ValueError("Context hash does not match. Possible data corruption.")

        # only load context once it's been verified(?)

        return workflow

    def dump_workflow_state(
        self, workflow: Workflow, run_kawrgs: dict
    ) -> WorkflowState:
        """Dump the workflow state.

        TODO: Support managing the workflow state.
        """
        context_bytes = pickle.dumps({})
        context_str = base64.b64encode(context_bytes).decode("ascii")
        context_hash = hash(context_str + hash_secret)

        return WorkflowState(
            hash=context_hash, state=context_str, run_kwargs=run_kawrgs
        )

    async def processing_loop(self) -> None:
        """The processing loop for the service.

        TODO: How do we handle any errors that occur during processing?
        """
        logger.info("Processing initiated.")
        while True:
            if not self.running:
                await asyncio.sleep(self.step_interval)
                continue

            async with self.lock:
                current_calls = [(t, c) for t, c in self._outstanding_calls.items()]

            for task_id, current_call in current_calls:
                # TODO: resume a workflow session?

                # load the state
                self.load_workflow_state(self.workflow, current_call)

                # run the workflow
                # TODO: How do we handle streaming? Websockets?
                result = await self.workflow.run(**current_call.run_kwargs)

                # dump the state
                updated_state = self.dump_workflow_state(
                    self.workflow, current_call.run_kwargs
                )

                await self.message_queue.publish(
                    QueueMessage(
                        type=CONTROL_PLANE_NAME,
                        action=ActionTypes.COMPLETED_TASK,
                        data=TaskResult(
                            task_id=task_id,
                            history=[],
                            result=str(result),
                            data=updated_state.dict(),
                        ).model_dump(),
                    )
                )

                # clean up
                async with self.lock:
                    self._outstanding_calls.pop(task_id, None)

            await asyncio.sleep(self.step_interval)

    async def process_message(self, message: QueueMessage) -> None:
        """Process a message received from the message queue."""
        if message.action == ActionTypes.NEW_TASK:
            new_task = NewTask(**message.data or {})
            async with self.lock:
                new_task.state["run_kwargs"] = json.loads(new_task.task.input)
                workflow_state = WorkflowState(
                    **new_task.state,
                )
                self._outstanding_calls[new_task.task.task_id] = workflow_state
        else:
            raise ValueError(f"Unhandled action: {message.action}")

    def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
        """Get the consumer for the message queue.

        Args:
            remote (bool):
                Whether the consumer is remote. Defaults to False.
                If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
        """
        if remote:
            url = (
                f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
                if self.port
                else f"http://{self.host}{self._app.url_path_for('process_message')}"
            )
            return RemoteMessageConsumer(
                id_=self.publisher_id,
                url=url,
                message_type=self.service_name,
            )

        return CallableMessageConsumer(
            id_=self.publisher_id,
            message_type=self.service_name,
            handler=self.process_message,
        )

    async def launch_local(self) -> asyncio.Task:
        """Launch the service in-process."""
        logger.info(f"{self.service_name} launch_local")
        return asyncio.create_task(self.processing_loop())

    # ---- Server based methods ----

    @asynccontextmanager
    async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
        """Starts the processing loop when the fastapi app starts."""
        asyncio.create_task(self.processing_loop())
        yield
        self.running = False

    async def home(self) -> Dict[str, str]:
        """Home endpoint. Returns general information about the service."""
        return {
            "service_name": self.service_name,
            "description": self.description,
            "running": str(self.running),
            "step_interval": str(self.step_interval),
            "num_outstanding_calls": str(len(self._outstanding_calls)),
            "type": "workflow_service",
        }

    async def launch_server(self) -> None:
        """Launch the service as a FastAPI server."""
        host = self.internal_host or self.host
        port = self.internal_port or self.port
        logger.info(f"Launching {self.service_name} server at {host}:{port}")

        class CustomServer(uvicorn.Server):
            def install_signal_handlers(self) -> None:
                pass

        cfg = uvicorn.Config(self._app, host=host, port=port)
        server = CustomServer(cfg)
        await server.serve()

service_definition property #

service_definition: ServiceDefinition

Service definition.

message_queue property #

message_queue: BaseMessageQueue

Message queue.

publisher_id property #

publisher_id: str

Publisher ID.

publish_callback property #

publish_callback: Optional[PublishCallback]

Publish callback, if any.

load_workflow_state #

load_workflow_state(workflow: Workflow, state: WorkflowState) -> Workflow

Fork the workflow with the given state.

TODO: Support managing the workflow state.

Source code in llama-agents/llama_deploy/services/workflow.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def load_workflow_state(self, workflow: Workflow, state: WorkflowState) -> Workflow:
    """Fork the workflow with the given state.

    TODO: Support managing the workflow state.
    """
    context_hash = state.hash
    context_str = state.state
    if not context_str:
        return workflow

    if hash(context_str + hash_secret) != context_hash:
        raise ValueError("Context hash does not match. Possible data corruption.")

    # only load context once it's been verified(?)

    return workflow

dump_workflow_state #

dump_workflow_state(workflow: Workflow, run_kawrgs: dict) -> WorkflowState

Dump the workflow state.

TODO: Support managing the workflow state.

Source code in llama-agents/llama_deploy/services/workflow.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def dump_workflow_state(
    self, workflow: Workflow, run_kawrgs: dict
) -> WorkflowState:
    """Dump the workflow state.

    TODO: Support managing the workflow state.
    """
    context_bytes = pickle.dumps({})
    context_str = base64.b64encode(context_bytes).decode("ascii")
    context_hash = hash(context_str + hash_secret)

    return WorkflowState(
        hash=context_hash, state=context_str, run_kwargs=run_kawrgs
    )

processing_loop async #

processing_loop() -> None

The processing loop for the service.

TODO: How do we handle any errors that occur during processing?

Source code in llama-agents/llama_deploy/services/workflow.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
async def processing_loop(self) -> None:
    """The processing loop for the service.

    TODO: How do we handle any errors that occur during processing?
    """
    logger.info("Processing initiated.")
    while True:
        if not self.running:
            await asyncio.sleep(self.step_interval)
            continue

        async with self.lock:
            current_calls = [(t, c) for t, c in self._outstanding_calls.items()]

        for task_id, current_call in current_calls:
            # TODO: resume a workflow session?

            # load the state
            self.load_workflow_state(self.workflow, current_call)

            # run the workflow
            # TODO: How do we handle streaming? Websockets?
            result = await self.workflow.run(**current_call.run_kwargs)

            # dump the state
            updated_state = self.dump_workflow_state(
                self.workflow, current_call.run_kwargs
            )

            await self.message_queue.publish(
                QueueMessage(
                    type=CONTROL_PLANE_NAME,
                    action=ActionTypes.COMPLETED_TASK,
                    data=TaskResult(
                        task_id=task_id,
                        history=[],
                        result=str(result),
                        data=updated_state.dict(),
                    ).model_dump(),
                )
            )

            # clean up
            async with self.lock:
                self._outstanding_calls.pop(task_id, None)

        await asyncio.sleep(self.step_interval)

process_message async #

process_message(message: QueueMessage) -> None

Process a message received from the message queue.

Source code in llama-agents/llama_deploy/services/workflow.py
279
280
281
282
283
284
285
286
287
288
289
290
async def process_message(self, message: QueueMessage) -> None:
    """Process a message received from the message queue."""
    if message.action == ActionTypes.NEW_TASK:
        new_task = NewTask(**message.data or {})
        async with self.lock:
            new_task.state["run_kwargs"] = json.loads(new_task.task.input)
            workflow_state = WorkflowState(
                **new_task.state,
            )
            self._outstanding_calls[new_task.task.task_id] = workflow_state
    else:
        raise ValueError(f"Unhandled action: {message.action}")

as_consumer #

as_consumer(remote: bool = False) -> BaseMessageQueueConsumer

Get the consumer for the message queue.

Parameters:

Name Type Description Default
remote bool

Whether the consumer is remote. Defaults to False. If True, the consumer will be a RemoteMessageConsumer that uses the process_message endpoint.

False
Source code in llama-agents/llama_deploy/services/workflow.py
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
def as_consumer(self, remote: bool = False) -> BaseMessageQueueConsumer:
    """Get the consumer for the message queue.

    Args:
        remote (bool):
            Whether the consumer is remote. Defaults to False.
            If True, the consumer will be a RemoteMessageConsumer that uses the `process_message` endpoint.
    """
    if remote:
        url = (
            f"http://{self.host}:{self.port}{self._app.url_path_for('process_message')}"
            if self.port
            else f"http://{self.host}{self._app.url_path_for('process_message')}"
        )
        return RemoteMessageConsumer(
            id_=self.publisher_id,
            url=url,
            message_type=self.service_name,
        )

    return CallableMessageConsumer(
        id_=self.publisher_id,
        message_type=self.service_name,
        handler=self.process_message,
    )

launch_local async #

launch_local() -> Task

Launch the service in-process.

Source code in llama-agents/llama_deploy/services/workflow.py
318
319
320
321
async def launch_local(self) -> asyncio.Task:
    """Launch the service in-process."""
    logger.info(f"{self.service_name} launch_local")
    return asyncio.create_task(self.processing_loop())

lifespan async #

lifespan(app: FastAPI) -> AsyncGenerator[None, None]

Starts the processing loop when the fastapi app starts.

Source code in llama-agents/llama_deploy/services/workflow.py
325
326
327
328
329
330
@asynccontextmanager
async def lifespan(self, app: FastAPI) -> AsyncGenerator[None, None]:
    """Starts the processing loop when the fastapi app starts."""
    asyncio.create_task(self.processing_loop())
    yield
    self.running = False

home async #

home() -> Dict[str, str]

Home endpoint. Returns general information about the service.

Source code in llama-agents/llama_deploy/services/workflow.py
332
333
334
335
336
337
338
339
340
341
async def home(self) -> Dict[str, str]:
    """Home endpoint. Returns general information about the service."""
    return {
        "service_name": self.service_name,
        "description": self.description,
        "running": str(self.running),
        "step_interval": str(self.step_interval),
        "num_outstanding_calls": str(len(self._outstanding_calls)),
        "type": "workflow_service",
    }

launch_server async #

launch_server() -> None

Launch the service as a FastAPI server.

Source code in llama-agents/llama_deploy/services/workflow.py
343
344
345
346
347
348
349
350
351
352
353
354
355
async def launch_server(self) -> None:
    """Launch the service as a FastAPI server."""
    host = self.internal_host or self.host
    port = self.internal_port or self.port
    logger.info(f"Launching {self.service_name} server at {host}:{port}")

    class CustomServer(uvicorn.Server):
        def install_signal_handlers(self) -> None:
            pass

    cfg = uvicorn.Config(self._app, host=host, port=port)
    server = CustomServer(cfg)
    await server.serve()

WorkflowServiceConfig #

Bases: BaseSettings

Workflow service configuration.

Source code in llama-agents/llama_deploy/services/workflow.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class WorkflowServiceConfig(BaseSettings):
    """Workflow service configuration."""

    model_config = SettingsConfigDict(env_prefix="WORKFLOW_SERVICE_")

    host: str
    port: int
    internal_host: Optional[str] = None
    internal_port: Optional[int] = None
    service_name: str
    description: str = "A service that wraps a llama-index workflow."
    running: bool = True
    step_interval: float = 0.1
    raise_exceptions: bool = False

options: members: - BaseService - WorkflowService - WorkflowServiceConfig