Skip to content

Index

Dataset Module.

BaseLlamaDataExample #

Bases: BaseModel

Base llama dataset example class.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
65
66
67
68
69
70
71
72
class BaseLlamaDataExample(BaseModel):
    """Base llama dataset example class."""

    @property
    @abstractmethod
    def class_name(self) -> str:
        """Class name."""
        return "BaseLlamaDataExample"

class_name abstractmethod property #

class_name: str

Class name.

BaseLlamaDataset #

Bases: BaseModel, Generic[P]

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
class BaseLlamaDataset(BaseModel, Generic[P]):
    _example_type: ClassVar[Type[BaseLlamaDataExample]]
    examples: List[BaseLlamaDataExample] = Field(
        default=[], description="Data examples of this dataset."
    )
    _predictions_cache: List[BaseLlamaExamplePrediction] = PrivateAttr(
        default_factory=list
    )

    def __getitem__(
        self, val: Union[slice, int]
    ) -> Union[Sequence[BaseLlamaDataExample], BaseLlamaDataExample]:
        """Enable slicing and indexing.

        Returns the desired slice on `examples`.
        """
        return self.examples[val]

    @abstractmethod
    def to_pandas(self) -> Any:
        """Create pandas dataframe."""

    def save_json(self, path: str) -> None:
        """Save json."""
        with open(path, "w") as f:
            examples = [self._example_type.model_dump(el) for el in self.examples]
            data = {
                "examples": examples,
            }

            json.dump(data, f, indent=4)

    @classmethod
    def from_json(cls, path: str) -> "BaseLlamaDataset":
        """Load json."""
        with open(path) as f:
            data = json.load(f)

        examples = [cls._example_type.model_validate(el) for el in data["examples"]]

        return cls(
            examples=examples,
        )

    @abstractmethod
    def _construct_prediction_dataset(
        self, predictions: Sequence[BaseLlamaExamplePrediction]
    ) -> BaseLlamaPredictionDataset:
        """Construct the specific prediction dataset.

        Args:
            predictions (List[BaseLlamaExamplePrediction]): the list of predictions.

        Returns:
            BaseLlamaPredictionDataset: A dataset of predictions.
        """

    @abstractmethod
    def _predict_example(
        self,
        predictor: P,
        example: BaseLlamaDataExample,
        sleep_time_in_seconds: int = 0,
    ) -> BaseLlamaExamplePrediction:
        """Predict on a single example.

        NOTE: Subclasses need to implement this.

        Args:
            predictor (PredictorType): The predictor to make the prediciton with.
            example (BaseLlamaDataExample): The example to predict on.

        Returns:
            BaseLlamaExamplePrediction: The prediction.
        """

    def make_predictions_with(
        self,
        predictor: P,
        show_progress: bool = False,
        batch_size: int = 20,
        sleep_time_in_seconds: int = 0,
    ) -> BaseLlamaPredictionDataset:
        """Predict with a given query engine.

        Args:
            predictor (PredictorType): The predictor to make predictions with.
            show_progress (bool, optional): Show progress of making predictions.
            batch_size (int): Used to batch async calls, especially to reduce chances
                            of hitting RateLimitError from openai.
            sleep_time_in_seconds (int): Amount of time to sleep between batch call
                            to reduce chance of hitting RateLimitError from openai.

        Returns:
            BaseLlamaPredictionDataset: A dataset of predictions.
        """
        if self._predictions_cache:
            start_example_position = len(self._predictions_cache)
        else:
            start_example_position = 0

        for batch in self._batch_examples(
            batch_size=batch_size, start_position=start_example_position
        ):
            if show_progress:
                example_iterator = tqdm.tqdm(batch)
            else:
                example_iterator = batch
            for example in example_iterator:
                self._predictions_cache.append(
                    self._predict_example(predictor, example, sleep_time_in_seconds)
                )

        return self._construct_prediction_dataset(predictions=self._predictions_cache)

    # async methods
    @abstractmethod
    async def _apredict_example(
        self,
        predictor: P,
        example: BaseLlamaDataExample,
        sleep_time_in_seconds: int,
    ) -> BaseLlamaExamplePrediction:
        """Async predict on a single example.

        NOTE: Subclasses need to implement this.

        Args:
            predictor (PredictorType): The predictor to make the prediciton with.
            example (BaseLlamaDataExample): The example to predict on.

        Returns:
            BaseLlamaExamplePrediction: The prediction.
        """

    def _batch_examples(
        self,
        batch_size: int = 20,
        start_position: int = 0,
    ) -> Generator[Sequence[BaseLlamaDataExample], None, None]:
        """Batches examples and predictions with a given batch_size."""
        num_examples = len(self.examples)
        for ndx in range(start_position, num_examples, batch_size):
            yield self.examples[ndx : min(ndx + batch_size, num_examples)]

    async def amake_predictions_with(
        self,
        predictor: P,
        show_progress: bool = False,
        batch_size: int = 20,
        sleep_time_in_seconds: int = 1,
    ) -> BaseLlamaPredictionDataset:
        """Async predict with a given query engine.

        Args:
            predictor (PredictorType): The predictor to make predictions with.
            show_progress (bool, optional): Show progress of making predictions.
            batch_size (int): Used to batch async calls, especially to reduce chances
                            of hitting RateLimitError from openai.
            sleep_time_in_seconds (int): Amount of time to sleep between batch call
                            to reduce chance of hitting RateLimitError from openai.

        Returns:
            BaseLlamaPredictionDataset: A dataset of predictions.
        """
        if self._predictions_cache:
            start_example_position = len(self._predictions_cache)
        else:
            start_example_position = 0

        for batch in self._batch_examples(
            batch_size=batch_size, start_position=start_example_position
        ):
            tasks = []
            for example in batch:
                tasks.append(
                    self._apredict_example(predictor, example, sleep_time_in_seconds)
                )
            asyncio_mod = asyncio_module(show_progress=show_progress)

            try:
                if show_progress:
                    batch_predictions = await asyncio_mod.gather(
                        *tasks, desc="Batch processing of predictions"
                    )
                else:
                    batch_predictions = await asyncio_mod.gather(*tasks)
            except Exception as err:
                if show_progress:
                    asyncio_mod.close()

                if "RateLimitError" in str(err):
                    raise ValueError(
                        "You've hit rate limits on your OpenAI subscription. This"
                        " class caches previous predictions after each successful"
                        " batch execution. Based off this cache, when executing this"
                        " command again it will attempt to predict on only the examples "
                        "that have not yet been predicted. Try reducing your batch_size."
                    ) from err
                else:
                    raise err  # noqa: TRY201

            self._predictions_cache += batch_predictions
            # time.sleep(sleep_time_in_seconds)

        prediction_dataset = self._construct_prediction_dataset(
            predictions=self._predictions_cache
        )
        self._predictions_cache = []  # clear cache
        return prediction_dataset

    @property
    @abstractmethod
    def class_name(self) -> str:
        """Class name."""
        return "BaseLlamaDataset"

class_name abstractmethod property #

class_name: str

Class name.

to_pandas abstractmethod #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
147
148
149
@abstractmethod
def to_pandas(self) -> Any:
    """Create pandas dataframe."""

save_json #

save_json(path: str) -> None

Save json.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
151
152
153
154
155
156
157
158
159
def save_json(self, path: str) -> None:
    """Save json."""
    with open(path, "w") as f:
        examples = [self._example_type.model_dump(el) for el in self.examples]
        data = {
            "examples": examples,
        }

        json.dump(data, f, indent=4)

from_json classmethod #

from_json(path: str) -> BaseLlamaDataset

Load json.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
161
162
163
164
165
166
167
168
169
170
171
@classmethod
def from_json(cls, path: str) -> "BaseLlamaDataset":
    """Load json."""
    with open(path) as f:
        data = json.load(f)

    examples = [cls._example_type.model_validate(el) for el in data["examples"]]

    return cls(
        examples=examples,
    )

make_predictions_with #

make_predictions_with(predictor: P, show_progress: bool = False, batch_size: int = 20, sleep_time_in_seconds: int = 0) -> BaseLlamaPredictionDataset

Predict with a given query engine.

Parameters:

Name Type Description Default
predictor PredictorType

The predictor to make predictions with.

required
show_progress bool

Show progress of making predictions.

False
batch_size int

Used to batch async calls, especially to reduce chances of hitting RateLimitError from openai.

20
sleep_time_in_seconds int

Amount of time to sleep between batch call to reduce chance of hitting RateLimitError from openai.

0

Returns:

Name Type Description
BaseLlamaPredictionDataset BaseLlamaPredictionDataset

A dataset of predictions.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def make_predictions_with(
    self,
    predictor: P,
    show_progress: bool = False,
    batch_size: int = 20,
    sleep_time_in_seconds: int = 0,
) -> BaseLlamaPredictionDataset:
    """Predict with a given query engine.

    Args:
        predictor (PredictorType): The predictor to make predictions with.
        show_progress (bool, optional): Show progress of making predictions.
        batch_size (int): Used to batch async calls, especially to reduce chances
                        of hitting RateLimitError from openai.
        sleep_time_in_seconds (int): Amount of time to sleep between batch call
                        to reduce chance of hitting RateLimitError from openai.

    Returns:
        BaseLlamaPredictionDataset: A dataset of predictions.
    """
    if self._predictions_cache:
        start_example_position = len(self._predictions_cache)
    else:
        start_example_position = 0

    for batch in self._batch_examples(
        batch_size=batch_size, start_position=start_example_position
    ):
        if show_progress:
            example_iterator = tqdm.tqdm(batch)
        else:
            example_iterator = batch
        for example in example_iterator:
            self._predictions_cache.append(
                self._predict_example(predictor, example, sleep_time_in_seconds)
            )

    return self._construct_prediction_dataset(predictions=self._predictions_cache)

amake_predictions_with async #

amake_predictions_with(predictor: P, show_progress: bool = False, batch_size: int = 20, sleep_time_in_seconds: int = 1) -> BaseLlamaPredictionDataset

Async predict with a given query engine.

Parameters:

Name Type Description Default
predictor PredictorType

The predictor to make predictions with.

required
show_progress bool

Show progress of making predictions.

False
batch_size int

Used to batch async calls, especially to reduce chances of hitting RateLimitError from openai.

20
sleep_time_in_seconds int

Amount of time to sleep between batch call to reduce chance of hitting RateLimitError from openai.

1

Returns:

Name Type Description
BaseLlamaPredictionDataset BaseLlamaPredictionDataset

A dataset of predictions.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
async def amake_predictions_with(
    self,
    predictor: P,
    show_progress: bool = False,
    batch_size: int = 20,
    sleep_time_in_seconds: int = 1,
) -> BaseLlamaPredictionDataset:
    """Async predict with a given query engine.

    Args:
        predictor (PredictorType): The predictor to make predictions with.
        show_progress (bool, optional): Show progress of making predictions.
        batch_size (int): Used to batch async calls, especially to reduce chances
                        of hitting RateLimitError from openai.
        sleep_time_in_seconds (int): Amount of time to sleep between batch call
                        to reduce chance of hitting RateLimitError from openai.

    Returns:
        BaseLlamaPredictionDataset: A dataset of predictions.
    """
    if self._predictions_cache:
        start_example_position = len(self._predictions_cache)
    else:
        start_example_position = 0

    for batch in self._batch_examples(
        batch_size=batch_size, start_position=start_example_position
    ):
        tasks = []
        for example in batch:
            tasks.append(
                self._apredict_example(predictor, example, sleep_time_in_seconds)
            )
        asyncio_mod = asyncio_module(show_progress=show_progress)

        try:
            if show_progress:
                batch_predictions = await asyncio_mod.gather(
                    *tasks, desc="Batch processing of predictions"
                )
            else:
                batch_predictions = await asyncio_mod.gather(*tasks)
        except Exception as err:
            if show_progress:
                asyncio_mod.close()

            if "RateLimitError" in str(err):
                raise ValueError(
                    "You've hit rate limits on your OpenAI subscription. This"
                    " class caches previous predictions after each successful"
                    " batch execution. Based off this cache, when executing this"
                    " command again it will attempt to predict on only the examples "
                    "that have not yet been predicted. Try reducing your batch_size."
                ) from err
            else:
                raise err  # noqa: TRY201

        self._predictions_cache += batch_predictions
        # time.sleep(sleep_time_in_seconds)

    prediction_dataset = self._construct_prediction_dataset(
        predictions=self._predictions_cache
    )
    self._predictions_cache = []  # clear cache
    return prediction_dataset

BaseLlamaExamplePrediction #

Bases: BaseModel

Base llama dataset example class.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
55
56
57
58
59
60
61
62
class BaseLlamaExamplePrediction(BaseModel):
    """Base llama dataset example class."""

    @property
    @abstractmethod
    def class_name(self) -> str:
        """Class name."""
        return "BaseLlamaPrediction"

class_name abstractmethod property #

class_name: str

Class name.

BaseLlamaPredictionDataset #

Bases: BaseModel

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class BaseLlamaPredictionDataset(BaseModel):
    _prediction_type: ClassVar[Type[BaseLlamaExamplePrediction]]
    predictions: List[BaseLlamaExamplePrediction] = Field(
        default_factory=list, description="Predictions on train_examples."
    )

    def __getitem__(
        self, val: Union[slice, int]
    ) -> Union[Sequence[BaseLlamaExamplePrediction], BaseLlamaExamplePrediction]:
        """Enable slicing and indexing.

        Returns the desired slice on `predictions`.
        """
        return self.predictions[val]

    @abstractmethod
    def to_pandas(self) -> Any:
        """Create pandas dataframe."""

    def save_json(self, path: str) -> None:
        """Save json."""
        with open(path, "w") as f:
            predictions = None
            if self.predictions:
                predictions = [
                    self._prediction_type.model_dump(el) for el in self.predictions
                ]
            data = {
                "predictions": predictions,
            }

            json.dump(data, f, indent=4)

    @classmethod
    def from_json(cls, path: str) -> "BaseLlamaPredictionDataset":
        """Load json."""
        with open(path) as f:
            data = json.load(f)

        predictions = [
            cls._prediction_type.model_validate(el) for el in data["predictions"]
        ]

        return cls(
            predictions=predictions,
        )

    @property
    @abstractmethod
    def class_name(self) -> str:
        """Class name."""
        return "BaseLlamaPredictionDataset"

class_name abstractmethod property #

class_name: str

Class name.

to_pandas abstractmethod #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
90
91
92
@abstractmethod
def to_pandas(self) -> Any:
    """Create pandas dataframe."""

save_json #

save_json(path: str) -> None

Save json.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def save_json(self, path: str) -> None:
    """Save json."""
    with open(path, "w") as f:
        predictions = None
        if self.predictions:
            predictions = [
                self._prediction_type.model_dump(el) for el in self.predictions
            ]
        data = {
            "predictions": predictions,
        }

        json.dump(data, f, indent=4)

from_json classmethod #

from_json(path: str) -> BaseLlamaPredictionDataset

Load json.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
108
109
110
111
112
113
114
115
116
117
118
119
120
@classmethod
def from_json(cls, path: str) -> "BaseLlamaPredictionDataset":
    """Load json."""
    with open(path) as f:
        data = json.load(f)

    predictions = [
        cls._prediction_type.model_validate(el) for el in data["predictions"]
    ]

    return cls(
        predictions=predictions,
    )

CreatedByType #

Bases: str, Enum

The kinds of rag data examples.

Source code in llama-index-core/llama_index/core/llama_dataset/base.py
31
32
33
34
35
36
37
38
class CreatedByType(str, Enum):
    """The kinds of rag data examples."""

    HUMAN = "human"
    AI = "ai"

    def __str__(self) -> str:
        return self.value

EvaluatorExamplePrediction #

Bases: BaseLlamaExamplePrediction

Evaluation example prediction class.

Parameters:

Name Type Description Default
feedback Optional[str]

The evaluator's feedback.

required
score Optional[float]

The evaluator's score.

required
Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class EvaluatorExamplePrediction(BaseLlamaExamplePrediction):
    """Evaluation example prediction class.

    Args:
        feedback (Optional[str]): The evaluator's feedback.
        score (Optional[float]): The evaluator's score.
    """

    feedback: str = Field(
        default_factory=str,
        description="The generated (predicted) response that can be compared to a reference (ground-truth) answer.",
    )
    score: Optional[float] = Field(
        default=None,
        description="The generated (predicted) response that can be compared to a reference (ground-truth) answer.",
    )
    invalid_prediction: bool = Field(
        default=False, description="Whether or not the prediction is a valid one."
    )
    invalid_reason: Optional[str] = Field(
        default=None, description="Reason as to why prediction is invalid."
    )

    @property
    def class_name(self) -> str:
        """Data example class name."""
        return "EvaluatorExamplePrediction"

class_name property #

class_name: str

Data example class name.

EvaluatorPredictionDataset #

Bases: BaseLlamaPredictionDataset

Evaluation Prediction Dataset Class.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class EvaluatorPredictionDataset(BaseLlamaPredictionDataset):
    """Evaluation Prediction Dataset Class."""

    _prediction_type = EvaluatorExamplePrediction

    def to_pandas(self) -> Any:
        """Create pandas dataframe."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        data: Dict[str, List] = {
            "feedback": [],
            "score": [],
        }
        for pred in self.predictions:
            if not isinstance(pred, EvaluatorExamplePrediction):
                raise ValueError(
                    "EvaluatorPredictionDataset can only contain EvaluatorExamplePrediction instances."
                )
            data["feedback"].append(pred.feedback)
            data["score"].append(pred.score)

        return pd.DataFrame(data)

    @property
    def class_name(self) -> str:
        """Class name."""
        return "EvaluatorPredictionDataset"

class_name property #

class_name: str

Class name.

to_pandas #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def to_pandas(self) -> Any:
    """Create pandas dataframe."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas is required for this function. Please install it with `pip install pandas`."
        )

    data: Dict[str, List] = {
        "feedback": [],
        "score": [],
    }
    for pred in self.predictions:
        if not isinstance(pred, EvaluatorExamplePrediction):
            raise ValueError(
                "EvaluatorPredictionDataset can only contain EvaluatorExamplePrediction instances."
            )
        data["feedback"].append(pred.feedback)
        data["score"].append(pred.score)

    return pd.DataFrame(data)

LabelledEvaluatorDataExample #

Bases: BaseLlamaDataExample

Evaluation example class.

This data class contains the ingredients to perform a new "prediction" i.e., evaluation. Here an evaluator is meant to evaluate a response against an associated query as well as optionally contexts.

Parameters:

Name Type Description Default
query str

The user query

required
query_by CreatedBy

Query generated by human or ai (model-name)

required
contexts Optional[List[str]]

The contexts used for response

required
answer str

Answer to the query that is to be evaluated.

required
answer_by

The reference answer generated by human or ai (model-name).

required
ground_truth_answer Optional[str]
required
ground_truth_answer_by Optional[CreatedBy]
required
reference_feedback str

The reference feedback evaluation.

required
reference_score float

The reference score evaluation.

required
reference_evaluation_by CreatedBy

Evaluation generated by human or ai (model-name)

required
Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
class LabelledEvaluatorDataExample(BaseLlamaDataExample):
    """Evaluation example class.

    This data class contains the ingredients to perform a new "prediction" i.e.,
    evaluation. Here an evaluator is meant to evaluate a response against an
    associated query as well as optionally contexts.

    Args:
        query (str): The user query
        query_by (CreatedBy): Query generated by human or ai (model-name)
        contexts (Optional[List[str]]): The contexts used for response
        answer (str): Answer to the query that is to be evaluated.
        answer_by: The reference answer generated by human or ai (model-name).
        ground_truth_answer (Optional[str]):
        ground_truth_answer_by (Optional[CreatedBy]):
        reference_feedback (str): The reference feedback evaluation.
        reference_score (float): The reference score evaluation.
        reference_evaluation_by (CreatedBy): Evaluation generated by human or ai (model-name)
    """

    query: str = Field(
        default_factory=str, description="The user query for the example."
    )
    query_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the query."
    )
    contexts: Optional[List[str]] = Field(
        default_factory=None,
        description="The contexts used to generate the answer.",
    )
    answer: str = Field(
        default_factory=str,
        description="The provided answer to the example that is to be evaluated.",
    )
    answer_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the answer."
    )
    ground_truth_answer: Optional[str] = Field(
        default=None,
        description="The ground truth answer to the example that is used to evaluate the provided `answer`.",
    )
    ground_truth_answer_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the ground-truth answer."
    )
    reference_feedback: Optional[str] = Field(
        default=None,
        description="The reference feedback (ground-truth).",
    )
    reference_score: float = Field(
        default_factory=float, description="The reference score (ground-truth)."
    )
    reference_evaluation_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the evaluation (feedback and score)."
    )

    @property
    def class_name(self) -> str:
        """Data example class name."""
        return "LabelledEvaluatorDataExample"

class_name property #

class_name: str

Data example class name.

LabelledEvaluatorDataset #

Bases: BaseLlamaDataset[BaseEvaluator]

LabelledEvalationDataset class.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
class LabelledEvaluatorDataset(BaseLlamaDataset[BaseEvaluator]):
    """LabelledEvalationDataset class."""

    _example_type = LabelledEvaluatorDataExample

    def to_pandas(self) -> Any:
        """Create pandas dataframe."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        data: Dict[str, List] = {
            "query": [],
            "answer": [],
            "contexts": [],
            "ground_truth_answer": [],
            "query_by": [],
            "answer_by": [],
            "ground_truth_answer_by": [],
            "reference_feedback": [],
            "reference_score": [],
            "reference_evaluation_by": [],
        }

        for example in self.examples:
            if not isinstance(example, LabelledEvaluatorDataExample):
                raise ValueError(
                    "LabelledEvaluatorDataset can only contain LabelledEvaluatorDataExample instances."
                )
            data["query"].append(example.query)
            data["answer"].append(example.answer)
            data["contexts"].append(example.contexts)
            data["ground_truth_answer"].append(example.ground_truth_answer)
            data["query_by"].append(str(example.query_by))
            data["answer_by"].append(str(example.answer_by))
            data["ground_truth_answer_by"].append(str(example.ground_truth_answer_by))
            data["reference_feedback"].append(example.reference_feedback)
            data["reference_score"].append(example.reference_score)
            data["reference_evaluation_by"].append(str(example.reference_evaluation_by))

        return pd.DataFrame(data)

    async def _apredict_example(  # type: ignore
        self,
        predictor: BaseEvaluator,
        example: LabelledEvaluatorDataExample,
        sleep_time_in_seconds: int,
    ) -> EvaluatorExamplePrediction:
        """Async predict RAG example with a query engine."""
        await asyncio.sleep(sleep_time_in_seconds)
        try:
            eval_result: EvaluationResult = await predictor.aevaluate(
                query=example.query,
                response=example.answer,
                contexts=example.contexts,
                reference=example.ground_truth_answer,
                sleep_time_in_seconds=sleep_time_in_seconds,
            )
        except Exception as err:
            # TODO: raise warning here as well
            return EvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=f"Caught error {err!s}"
            )

        if not eval_result.invalid_result:
            return EvaluatorExamplePrediction(
                feedback=eval_result.feedback or "", score=eval_result.score
            )
        else:
            return EvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=eval_result.invalid_reason
            )

    def _predict_example(  # type: ignore
        self,
        predictor: BaseEvaluator,
        example: LabelledEvaluatorDataExample,
        sleep_time_in_seconds: int = 0,
    ) -> EvaluatorExamplePrediction:
        """Predict RAG example with a query engine."""
        time.sleep(sleep_time_in_seconds)
        try:
            eval_result: EvaluationResult = predictor.evaluate(
                query=example.query,
                response=example.answer,
                contexts=example.contexts,
                reference=example.ground_truth_answer,
                sleep_time_in_seconds=sleep_time_in_seconds,
            )
        except Exception as err:
            # TODO: raise warning here as well
            return EvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=f"Caught error {err!s}"
            )

        if not eval_result.invalid_result:
            return EvaluatorExamplePrediction(
                feedback=eval_result.feedback or "", score=eval_result.score
            )
        else:
            return EvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=eval_result.invalid_reason
            )

    def _construct_prediction_dataset(  # type: ignore
        self, predictions: Sequence[EvaluatorExamplePrediction]
    ) -> EvaluatorPredictionDataset:
        """Construct prediction dataset."""
        return EvaluatorPredictionDataset(predictions=predictions)

    @property
    def class_name(self) -> str:
        """Class name."""
        return "LabelledEvaluatorDataset"

class_name property #

class_name: str

Class name.

to_pandas #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def to_pandas(self) -> Any:
    """Create pandas dataframe."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas is required for this function. Please install it with `pip install pandas`."
        )

    data: Dict[str, List] = {
        "query": [],
        "answer": [],
        "contexts": [],
        "ground_truth_answer": [],
        "query_by": [],
        "answer_by": [],
        "ground_truth_answer_by": [],
        "reference_feedback": [],
        "reference_score": [],
        "reference_evaluation_by": [],
    }

    for example in self.examples:
        if not isinstance(example, LabelledEvaluatorDataExample):
            raise ValueError(
                "LabelledEvaluatorDataset can only contain LabelledEvaluatorDataExample instances."
            )
        data["query"].append(example.query)
        data["answer"].append(example.answer)
        data["contexts"].append(example.contexts)
        data["ground_truth_answer"].append(example.ground_truth_answer)
        data["query_by"].append(str(example.query_by))
        data["answer_by"].append(str(example.answer_by))
        data["ground_truth_answer_by"].append(str(example.ground_truth_answer_by))
        data["reference_feedback"].append(example.reference_feedback)
        data["reference_score"].append(example.reference_score)
        data["reference_evaluation_by"].append(str(example.reference_evaluation_by))

    return pd.DataFrame(data)

LabelledPairwiseEvaluatorDataExample #

Bases: LabelledEvaluatorDataExample

Labelled pairwise evaluation data example class.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
class LabelledPairwiseEvaluatorDataExample(LabelledEvaluatorDataExample):
    """Labelled pairwise evaluation data example class."""

    second_answer: str = Field(
        default_factory=str,
        description="The second answer to the example that is to be evaluated along versus `answer`.",
    )
    second_answer_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the second answer."
    )

    @property
    def class_name(self) -> str:
        """Data example class name."""
        return "LabelledPairwiseEvaluatorDataExample"

class_name property #

class_name: str

Data example class name.

LabelledPairwiseEvaluatorDataset #

Bases: BaseLlamaDataset[BaseEvaluator]

Labelled pairwise evaluation dataset. For evaluating the evaluator in performing pairwise evaluations.

Parameters:

Name Type Description Default
BaseLlamaDataset _type_

description

required
Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
class LabelledPairwiseEvaluatorDataset(BaseLlamaDataset[BaseEvaluator]):
    """Labelled pairwise evaluation dataset. For evaluating the evaluator in
    performing pairwise evaluations.

    Args:
        BaseLlamaDataset (_type_): _description_
    """

    _example_type = LabelledPairwiseEvaluatorDataExample

    def to_pandas(self) -> Any:
        """Create pandas dataframe."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        data: Dict[str, List] = {
            "query": [],
            "answer": [],
            "second_answer": [],
            "contexts": [],
            "ground_truth_answer": [],
            "query_by": [],
            "answer_by": [],
            "second_answer_by": [],
            "ground_truth_answer_by": [],
            "reference_feedback": [],
            "reference_score": [],
            "reference_evaluation_by": [],
        }
        for example in self.examples:
            if not isinstance(example, LabelledPairwiseEvaluatorDataExample):
                raise ValueError(
                    "LabelledPairwiseEvaluatorDataset can only contain LabelledPairwiseEvaluatorDataExample instances."
                )
            data["query"].append(example.query)
            data["answer"].append(example.answer)
            data["second_answer"].append(example.second_answer)
            data["contexts"].append(example.contexts)
            data["ground_truth_answer"].append(example.ground_truth_answer)
            data["query_by"].append(str(example.query_by))
            data["answer_by"].append(str(example.answer_by))
            data["second_answer_by"].append(str(example.second_answer_by))
            data["ground_truth_answer_by"].append(str(example.ground_truth_answer_by))
            data["reference_feedback"].append(example.reference_feedback)
            data["reference_score"].append(example.reference_score)
            data["reference_evaluation_by"].append(str(example.reference_evaluation_by))

        return pd.DataFrame(data)

    async def _apredict_example(  # type: ignore
        self,
        predictor: BaseEvaluator,
        example: LabelledPairwiseEvaluatorDataExample,
        sleep_time_in_seconds: int,
    ) -> PairwiseEvaluatorExamplePrediction:
        """Async predict evaluation example with an Evaluator."""
        await asyncio.sleep(sleep_time_in_seconds)
        try:
            eval_result: EvaluationResult = await predictor.aevaluate(
                query=example.query,
                response=example.answer,
                second_response=example.second_answer,
                contexts=example.contexts,
                reference=example.ground_truth_answer,
                sleep_time_in_seconds=sleep_time_in_seconds,
            )
        except Exception as err:
            # TODO: raise warning here as well
            return PairwiseEvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=f"Caught error {err!s}"
            )

        if not eval_result.invalid_result:
            return PairwiseEvaluatorExamplePrediction(
                feedback=eval_result.feedback or "",
                score=eval_result.score,
                evaluation_source=EvaluationSource(eval_result.pairwise_source),
            )
        else:
            return PairwiseEvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=eval_result.invalid_reason
            )

    def _predict_example(  # type: ignore
        self,
        predictor: BaseEvaluator,
        example: LabelledPairwiseEvaluatorDataExample,
        sleep_time_in_seconds: int = 0,
    ) -> PairwiseEvaluatorExamplePrediction:
        """Predict RAG example with a query engine."""
        time.sleep(sleep_time_in_seconds)
        try:
            eval_result: EvaluationResult = predictor.evaluate(
                query=example.query,
                response=example.answer,
                second_response=example.second_answer,
                contexts=example.contexts,
                reference=example.ground_truth_answer,
                sleep_time_in_seconds=sleep_time_in_seconds,
            )
        except Exception as err:
            # TODO: raise warning here as well
            return PairwiseEvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=f"Caught error {err!s}"
            )

        if not eval_result.invalid_result:
            return PairwiseEvaluatorExamplePrediction(
                feedback=eval_result.feedback or "",
                score=eval_result.score,
                evaluation_source=EvaluationSource(eval_result.pairwise_source),
            )
        else:
            return PairwiseEvaluatorExamplePrediction(
                invalid_prediction=True, invalid_reason=eval_result.invalid_reason
            )

    def _construct_prediction_dataset(  # type: ignore
        self, predictions: Sequence[PairwiseEvaluatorExamplePrediction]
    ) -> PairwiseEvaluatorPredictionDataset:
        """Construct prediction dataset."""
        return PairwiseEvaluatorPredictionDataset(predictions=predictions)

    @property
    def class_name(self) -> str:
        """Class name."""
        return "LabelledPairwiseEvaluatorDataset"

class_name property #

class_name: str

Class name.

to_pandas #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def to_pandas(self) -> Any:
    """Create pandas dataframe."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas is required for this function. Please install it with `pip install pandas`."
        )

    data: Dict[str, List] = {
        "query": [],
        "answer": [],
        "second_answer": [],
        "contexts": [],
        "ground_truth_answer": [],
        "query_by": [],
        "answer_by": [],
        "second_answer_by": [],
        "ground_truth_answer_by": [],
        "reference_feedback": [],
        "reference_score": [],
        "reference_evaluation_by": [],
    }
    for example in self.examples:
        if not isinstance(example, LabelledPairwiseEvaluatorDataExample):
            raise ValueError(
                "LabelledPairwiseEvaluatorDataset can only contain LabelledPairwiseEvaluatorDataExample instances."
            )
        data["query"].append(example.query)
        data["answer"].append(example.answer)
        data["second_answer"].append(example.second_answer)
        data["contexts"].append(example.contexts)
        data["ground_truth_answer"].append(example.ground_truth_answer)
        data["query_by"].append(str(example.query_by))
        data["answer_by"].append(str(example.answer_by))
        data["second_answer_by"].append(str(example.second_answer_by))
        data["ground_truth_answer_by"].append(str(example.ground_truth_answer_by))
        data["reference_feedback"].append(example.reference_feedback)
        data["reference_score"].append(example.reference_score)
        data["reference_evaluation_by"].append(str(example.reference_evaluation_by))

    return pd.DataFrame(data)

PairwiseEvaluatorExamplePrediction #

Bases: BaseLlamaExamplePrediction

Pairwise evaluation example prediction class.

Parameters:

Name Type Description Default
feedback Optional[str]

The evaluator's feedback.

required
score Optional[float]

The evaluator's score.

required
evaluation_source EvaluationSource

If the evaluation came from original order or flipped; or inconclusive.

required
Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
class PairwiseEvaluatorExamplePrediction(BaseLlamaExamplePrediction):
    """Pairwise evaluation example prediction class.

    Args:
        feedback (Optional[str]): The evaluator's feedback.
        score (Optional[float]): The evaluator's score.
        evaluation_source (EvaluationSource): If the evaluation came from original order or flipped; or inconclusive.
    """

    feedback: str = Field(
        default_factory=str,
        description="The generated (predicted) response that can be compared to a reference (ground-truth) answer.",
    )
    score: Optional[float] = Field(
        default=None,
        description="The generated (predicted) response that can be compared to a reference (ground-truth) answer.",
    )
    evaluation_source: Optional[EvaluationSource] = Field(
        default=None,
        description=(
            "Whether the evaluation comes from original, or flipped ordering. Can also be neither here indicating inconclusive judgement."
        ),
    )
    invalid_prediction: bool = Field(
        default=False, description="Whether or not the prediction is a valid one."
    )
    invalid_reason: Optional[str] = Field(
        default=None, description="Reason as to why prediction is invalid."
    )

    @property
    def class_name(self) -> str:
        """Data example class name."""
        return "PairwiseEvaluatorExamplePrediction"

class_name property #

class_name: str

Data example class name.

PairwiseEvaluatorPredictionDataset #

Bases: BaseLlamaPredictionDataset

Pairwise evaluation predictions dataset class.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
class PairwiseEvaluatorPredictionDataset(BaseLlamaPredictionDataset):
    """Pairwise evaluation predictions dataset class."""

    _prediction_type = PairwiseEvaluatorExamplePrediction

    def to_pandas(self) -> Any:
        """Create pandas dataframe."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        data: Dict[str, List] = {
            "feedback": [],
            "score": [],
            "ordering": [],
        }
        for prediction in self.predictions:
            if not isinstance(prediction, PairwiseEvaluatorExamplePrediction):
                raise ValueError(
                    "PairwiseEvaluatorPredictionDataset can only contain PairwiseEvaluatorExamplePrediction instances."
                )
            data["feedback"].append(prediction.feedback)
            data["score"].append(prediction.score)
            data["ordering"].append(str(prediction.evaluation_source))

        return pd.DataFrame(data)

    @property
    def class_name(self) -> str:
        """Class name."""
        return "PairwiseEvaluatorPredictionDataset"

class_name property #

class_name: str

Class name.

to_pandas #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/evaluator_evaluation.py
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def to_pandas(self) -> Any:
    """Create pandas dataframe."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas is required for this function. Please install it with `pip install pandas`."
        )

    data: Dict[str, List] = {
        "feedback": [],
        "score": [],
        "ordering": [],
    }
    for prediction in self.predictions:
        if not isinstance(prediction, PairwiseEvaluatorExamplePrediction):
            raise ValueError(
                "PairwiseEvaluatorPredictionDataset can only contain PairwiseEvaluatorExamplePrediction instances."
            )
        data["feedback"].append(prediction.feedback)
        data["score"].append(prediction.score)
        data["ordering"].append(str(prediction.evaluation_source))

    return pd.DataFrame(data)

LabelledRagDataExample #

Bases: BaseLlamaDataExample

RAG example class. Analogous to traditional ML datasets, this dataset contains the "features" (i.e., query + context) to make a prediction and the "label" (i.e., response) to evaluate the prediction.

Parameters:

Name Type Description Default
query str

The user query

required
query_by CreatedBy

Query generated by human or ai (model-name)

required
reference_contexts Optional[List[str]]

The contexts used for response

required
reference_answer [str]

Reference answer to the query. An answer that would receive full marks upon evaluation.

required
reference_answer_by

The reference answer generated by human or ai (model-name).

required
Source code in llama-index-core/llama_index/core/llama_dataset/rag.py
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class LabelledRagDataExample(BaseLlamaDataExample):
    """RAG example class. Analogous to traditional ML datasets, this dataset contains
    the "features" (i.e., query + context) to make a prediction and the "label" (i.e., response)
    to evaluate the prediction.

    Args:
        query (str): The user query
        query_by (CreatedBy): Query generated by human or ai (model-name)
        reference_contexts (Optional[List[str]]): The contexts used for response
        reference_answer ([str]): Reference answer to the query. An answer
                                    that would receive full marks upon evaluation.
        reference_answer_by: The reference answer generated by human or ai (model-name).
    """

    query: str = Field(
        default_factory=str, description="The user query for the example."
    )
    query_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the query."
    )
    reference_contexts: Optional[List[str]] = Field(
        default_factory=None,
        description="The contexts used to generate the reference answer.",
    )
    reference_answer: str = Field(
        default_factory=str,
        description="The reference (ground-truth) answer to the example.",
    )
    reference_answer_by: Optional[CreatedBy] = Field(
        default=None, description="What generated the reference answer."
    )

    @property
    def class_name(self) -> str:
        """Data example class name."""
        return "LabelledRagDataExample"

class_name property #

class_name: str

Data example class name.

LabelledRagDataset #

Bases: BaseLlamaDataset[BaseQueryEngine]

RagDataset class.

Source code in llama-index-core/llama_index/core/llama_dataset/rag.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
class LabelledRagDataset(BaseLlamaDataset[BaseQueryEngine]):
    """RagDataset class."""

    _example_type = LabelledRagDataExample

    def to_pandas(self) -> Any:
        """Create pandas dataframe."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        data: Dict[str, List] = {
            "query": [],
            "reference_contexts": [],
            "reference_answer": [],
            "reference_answer_by": [],
            "query_by": [],
        }
        for example in self.examples:
            if not isinstance(example, LabelledRagDataExample):
                raise ValueError(
                    "All examples in the dataset must be of type LabelledRagDataExample."
                )
            data["query"].append(example.query)
            data["reference_contexts"].append(example.reference_contexts)
            data["reference_answer"].append(example.reference_answer)
            data["reference_answer_by"].append(str(example.reference_answer_by))
            data["query_by"].append(str(example.query_by))

        return pd.DataFrame(data)

    async def _apredict_example(  # type: ignore
        self,
        predictor: BaseQueryEngine,
        example: LabelledRagDataExample,
        sleep_time_in_seconds: int,
    ) -> RagExamplePrediction:
        """Async predict RAG example with a query engine."""
        await asyncio.sleep(sleep_time_in_seconds)
        response = await predictor.aquery(example.query)
        return RagExamplePrediction(
            response=str(response), contexts=[s.text for s in response.source_nodes]
        )

    def _predict_example(  # type: ignore
        self,
        predictor: BaseQueryEngine,
        example: LabelledRagDataExample,
        sleep_time_in_seconds: int = 0,
    ) -> RagExamplePrediction:
        """Predict RAG example with a query engine."""
        time.sleep(sleep_time_in_seconds)
        response = predictor.query(example.query)
        return RagExamplePrediction(
            response=str(response), contexts=[s.text for s in response.source_nodes]
        )

    def _construct_prediction_dataset(  # type: ignore
        self, predictions: Sequence[RagExamplePrediction]
    ) -> RagPredictionDataset:
        """Construct prediction dataset."""
        return RagPredictionDataset(predictions=predictions)

    @property
    def class_name(self) -> str:
        """Class name."""
        return "LabelledRagDataset"

class_name property #

class_name: str

Class name.

to_pandas #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/rag.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def to_pandas(self) -> Any:
    """Create pandas dataframe."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas is required for this function. Please install it with `pip install pandas`."
        )

    data: Dict[str, List] = {
        "query": [],
        "reference_contexts": [],
        "reference_answer": [],
        "reference_answer_by": [],
        "query_by": [],
    }
    for example in self.examples:
        if not isinstance(example, LabelledRagDataExample):
            raise ValueError(
                "All examples in the dataset must be of type LabelledRagDataExample."
            )
        data["query"].append(example.query)
        data["reference_contexts"].append(example.reference_contexts)
        data["reference_answer"].append(example.reference_answer)
        data["reference_answer_by"].append(str(example.reference_answer_by))
        data["query_by"].append(str(example.query_by))

    return pd.DataFrame(data)

RagExamplePrediction #

Bases: BaseLlamaExamplePrediction

RAG example prediction class.

Parameters:

Name Type Description Default
response str

The response generated by the LLM.

required
contexts Optional[List[str]]

The retrieved context (text) for generating response.

required
Source code in llama-index-core/llama_index/core/llama_dataset/rag.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class RagExamplePrediction(BaseLlamaExamplePrediction):
    """RAG example prediction class.

    Args:
        response (str): The response generated by the LLM.
        contexts (Optional[List[str]]): The retrieved context (text) for generating
                                        response.
    """

    response: str = Field(
        default_factory=str,
        description="The generated (predicted) response that can be compared to a reference (ground-truth) answer.",
    )
    contexts: Optional[List[str]] = Field(
        default_factory=None,
        description="The contexts in raw text form used to generate the response.",
    )

    @property
    def class_name(self) -> str:
        """Data example class name."""
        return "RagExamplePrediction"

class_name property #

class_name: str

Data example class name.

RagPredictionDataset #

Bases: BaseLlamaPredictionDataset

RagDataset class.

Source code in llama-index-core/llama_index/core/llama_dataset/rag.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
class RagPredictionDataset(BaseLlamaPredictionDataset):
    """RagDataset class."""

    _prediction_type = RagExamplePrediction

    def to_pandas(self) -> Any:
        """Create pandas dataframe."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        data: Dict[str, List] = {
            "response": [],
            "contexts": [],
        }
        for pred in self.predictions:
            if not isinstance(pred, RagExamplePrediction):
                raise ValueError(
                    "All predictions in the dataset must be of type RagExamplePrediction."
                )
            data["response"].append(pred.response)
            data["contexts"].append(pred.contexts)

        return pd.DataFrame(data)

    @property
    def class_name(self) -> str:
        """Class name."""
        return "RagPredictionDataset"

class_name property #

class_name: str

Class name.

to_pandas #

to_pandas() -> Any

Create pandas dataframe.

Source code in llama-index-core/llama_index/core/llama_dataset/rag.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def to_pandas(self) -> Any:
    """Create pandas dataframe."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas is required for this function. Please install it with `pip install pandas`."
        )

    data: Dict[str, List] = {
        "response": [],
        "contexts": [],
    }
    for pred in self.predictions:
        if not isinstance(pred, RagExamplePrediction):
            raise ValueError(
                "All predictions in the dataset must be of type RagExamplePrediction."
            )
        data["response"].append(pred.response)
        data["contexts"].append(pred.contexts)

    return pd.DataFrame(data)

download_llama_dataset #

download_llama_dataset(llama_dataset_class: str, download_dir: str, llama_datasets_url: str = LLAMA_DATASETS_URL, llama_datasets_lfs_url: str = LLAMA_DATASETS_LFS_URL, llama_datasets_source_files_tree_url: str = LLAMA_DATASETS_SOURCE_FILES_GITHUB_TREE_URL, show_progress: bool = False, load_documents: bool = True) -> Tuple[BaseLlamaDataset, List[Document]]

Download dataset from datasets-LFS and llamahub.

Parameters:

Name Type Description Default
dataset_class

The name of the llamadataset class you want to download, such as PaulGrahamEssayDataset.

required
custom_dir

Custom dir name to download loader into (under parent folder).

required
custom_path

Custom dirpath to download loader into.

required
llama_datasets_url str

Url for getting ordinary files from llama_datasets repo

LLAMA_DATASETS_URL
llama_datasets_lfs_url str

Url for lfs-traced files llama_datasets repo

LLAMA_DATASETS_LFS_URL
llama_datasets_source_files_tree_url str

Url for listing source_files contents

LLAMA_DATASETS_SOURCE_FILES_GITHUB_TREE_URL
refresh_cache

If true, the local cache will be skipped and the loader will be fetched directly from the remote repo.

required
source_files_dirpath

The directory for storing source files

required
library_path

File name of the library file.

required
base_file_name

The rag dataset json file

required
disable_library_cache

Boolean to control library cache

required
override_path

Boolean to control overriding path

required
show_progress bool

Boolean for showing progress on downloading source files

False
load_documents bool

Boolean for whether or not source_files for LabelledRagDataset should be loaded.

True

Returns:

Type Description
Tuple[BaseLlamaDataset, List[Document]]

a BaseLlamaDataset and a List[Document]

Source code in llama-index-core/llama_index/core/llama_dataset/download.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def download_llama_dataset(
    llama_dataset_class: str,
    download_dir: str,
    llama_datasets_url: str = LLAMA_DATASETS_URL,
    llama_datasets_lfs_url: str = LLAMA_DATASETS_LFS_URL,
    llama_datasets_source_files_tree_url: str = LLAMA_DATASETS_SOURCE_FILES_GITHUB_TREE_URL,
    show_progress: bool = False,
    load_documents: bool = True,
) -> Tuple[BaseLlamaDataset, List[Document]]:
    """Download dataset from datasets-LFS and llamahub.

    Args:
        dataset_class: The name of the llamadataset class you want to download,
            such as `PaulGrahamEssayDataset`.
        custom_dir: Custom dir name to download loader into (under parent folder).
        custom_path: Custom dirpath to download loader into.
        llama_datasets_url: Url for getting ordinary files from llama_datasets repo
        llama_datasets_lfs_url: Url for lfs-traced files llama_datasets repo
        llama_datasets_source_files_tree_url: Url for listing source_files contents
        refresh_cache: If true, the local cache will be skipped and the
            loader will be fetched directly from the remote repo.
        source_files_dirpath: The directory for storing source files
        library_path: File name of the library file.
        base_file_name: The rag dataset json file
        disable_library_cache: Boolean to control library cache
        override_path: Boolean to control overriding path
        show_progress: Boolean for showing progress on downloading source files
        load_documents: Boolean for whether or not source_files for LabelledRagDataset should
                        be loaded.

    Returns:
        a `BaseLlamaDataset` and a `List[Document]`
    """
    filenames: Tuple[str, str] = download(
        llama_dataset_class,
        llama_datasets_url=llama_datasets_url,
        llama_datasets_lfs_url=llama_datasets_lfs_url,
        llama_datasets_source_files_tree_url=llama_datasets_source_files_tree_url,
        refresh_cache=True,
        custom_path=download_dir,
        library_path="library.json",
        disable_library_cache=True,
        override_path=True,
        show_progress=show_progress,
    )
    dataset_filename, source_files_dir = filenames
    track_download(llama_dataset_class, MODULE_TYPE.DATASETS)

    dataset = _resolve_dataset_class(dataset_filename).from_json(dataset_filename)
    documents = []

    # for now only rag datasets need to provide the documents
    # in order to build an index over them
    if "rag_dataset.json" in dataset_filename and load_documents:
        documents = SimpleDirectoryReader(input_dir=source_files_dir).load_data(
            show_progress=show_progress
        )

    return (dataset, documents)