Index
IngestionPipeline #
Bases: BaseModel
An ingestion pipeline that can be applied to data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Unique name of the ingestion pipeline. Defaults to DEFAULT_PIPELINE_NAME. |
DEFAULT_PIPELINE_NAME
|
project_name |
str
|
Unique name of the project. Defaults to DEFAULT_PROJECT_NAME. |
DEFAULT_PROJECT_NAME
|
transformations |
List[TransformComponent]
|
Transformations to apply to the data. Defaults to None. |
None
|
documents |
Optional[Sequence[Document]]
|
Documents to ingest. Defaults to None. |
None
|
readers |
Optional[List[ReaderConfig]]
|
Reader to use to read the data. Defaults to None. |
None
|
vector_store |
Optional[BasePydanticVectorStore]
|
Vector store to use to store the data. Defaults to None. |
None
|
cache |
Optional[IngestionCache]
|
Cache to use to store the data. Defaults to None. |
None
|
docstore |
Optional[BaseDocumentStore]
|
Document store to use for de-duping with a vector store. Defaults to None. |
None
|
docstore_strategy |
DocstoreStrategy
|
Document de-dup strategy. Defaults to DocstoreStrategy.UPSERTS. |
UPSERTS
|
disable_cache |
bool
|
Disable the cache. Defaults to False. |
False
|
base_url |
str
|
Base URL for the LlamaCloud API. Defaults to DEFAULT_BASE_URL. |
required |
app_url |
str
|
Base URL for the LlamaCloud app. Defaults to DEFAULT_APP_URL. |
required |
api_key |
Optional[str]
|
LlamaCloud API key. Defaults to None. |
required |
Examples:
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(chunk_size=512, chunk_overlap=20),
OpenAIEmbedding(),
],
)
nodes = pipeline.run(documents=documents)
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
|
persist #
persist(persist_dir: str = './pipeline_storage', fs: Optional[AbstractFileSystem] = None, cache_name: str = DEFAULT_CACHE_NAME, docstore_name: str = DOCSTORE_FNAME) -> None
Persist the pipeline to disk.
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
load #
load(persist_dir: str = './pipeline_storage', fs: Optional[AbstractFileSystem] = None, cache_name: str = DEFAULT_CACHE_NAME, docstore_name: str = DOCSTORE_FNAME) -> None
Load the pipeline from disk.
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
|
run #
run(show_progress: bool = False, documents: Optional[List[Document]] = None, nodes: Optional[Sequence[BaseNode]] = None, cache_collection: Optional[str] = None, in_place: bool = True, store_doc_text: bool = True, num_workers: Optional[int] = None, **kwargs: Any) -> Sequence[BaseNode]
Run a series of transformations on a set of nodes.
If a vector store is provided, nodes with embeddings will be added to the vector store.
If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
show_progress |
bool
|
Shows execution progress bar(s). Defaults to False. |
False
|
documents |
Optional[List[Document]]
|
Set of documents to be transformed. Defaults to None. |
None
|
nodes |
Optional[Sequence[BaseNode]]
|
Set of nodes to be transformed. Defaults to None. |
None
|
cache_collection |
Optional[str]
|
Cache for transformations. Defaults to None. |
None
|
in_place |
bool
|
Whether transformations creates a new list for transformed nodes or modifies the
array passed to |
True
|
num_workers |
Optional[int]
|
The number of parallel processes to use. If set to None, then sequential compute is used. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Sequence[BaseNode]
|
Sequence[BaseNode]: The set of transformed Nodes/Documents |
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
|
arun
async
#
arun(show_progress: bool = False, documents: Optional[List[Document]] = None, nodes: Optional[Sequence[BaseNode]] = None, cache_collection: Optional[str] = None, in_place: bool = True, store_doc_text: bool = True, num_workers: Optional[int] = None, **kwargs: Any) -> Sequence[BaseNode]
Run a series of transformations on a set of nodes.
If a vector store is provided, nodes with embeddings will be added to the vector store.
If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
show_progress |
bool
|
Shows execution progress bar(s). Defaults to False. |
False
|
documents |
Optional[List[Document]]
|
Set of documents to be transformed. Defaults to None. |
None
|
nodes |
Optional[Sequence[BaseNode]]
|
Set of nodes to be transformed. Defaults to None. |
None
|
cache_collection |
Optional[str]
|
Cache for transformations. Defaults to None. |
None
|
in_place |
bool
|
Whether transformations creates a new list for transformed nodes or modifies the
array passed to |
True
|
num_workers |
Optional[int]
|
The number of parallel processes to use. If set to None, then sequential compute is used. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Sequence[BaseNode]
|
Sequence[BaseNode]: The set of transformed Nodes/Documents |
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
|
DocstoreStrategy #
Bases: str
, Enum
Document de-duplication de-deduplication strategies work by comparing the hashes or ids stored in the document store. They require a document store to be set which must be persisted across pipeline runs.
Attributes:
Name | Type | Description |
---|---|---|
UPSERTS |
('upserts') Use upserts to handle duplicates. Checks if the a document is already in the doc store based on its id. If it is not, or if the hash of the document is updated, it will update the document in the doc store and run the transformations. |
|
DUPLICATES_ONLY |
('duplicates_only') Only handle duplicates. Checks if the hash of a document is already in the doc store. Only then it will add the document to the doc store and run the transformations |
|
UPSERTS_AND_DELETE |
('upserts_and_delete') Use upserts and delete to handle duplicates. Like the upsert strategy but it will also delete non-existing documents from the doc store |
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|