Skip to content

Vertexai

VertexAIIndex #

Bases: BaseManagedIndex

Vertex AI Index.

The Vertex AI RAG index implements a managed index that uses Vertex AI as the backend. Vertex AI performs a lot of the functions in traditional indexes in the backend: - breaks down a document into chunks (nodes) - Creates the embedding for each chunk (node) - Performs the search for the top k most similar nodes to a query - Optionally can perform summarization of the top k nodes

Parameters:

Name Type Description Default
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class VertexAIIndex(BaseManagedIndex):
    """Vertex AI Index.

    The Vertex AI RAG index implements a managed index that uses Vertex AI as the backend.
    Vertex AI performs a lot of the functions in traditional indexes in the backend:
    - breaks down a document into chunks (nodes)
    - Creates the embedding for each chunk (node)
    - Performs the search for the top k most similar nodes to a query
    - Optionally can perform summarization of the top k nodes

    Args:
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.
    """

    def __init__(
        self,
        project_id: str,
        location: Optional[str] = None,
        corpus_id: Optional[str] = None,
        corpus_display_name: Optional[str] = None,
        corpus_description: Optional[str] = None,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize the Vertex AI API."""
        if corpus_id and (corpus_display_name or corpus_description):
            raise ValueError(
                "Cannot specify both corpus_id and corpus_display_name or corpus_description"
            )

        self.project_id = project_id
        self.location = location
        self.show_progress = show_progress
        self._user_agent = get_user_agent("vertexai-rag")

        vertexai.init(project=self.project_id, location=self.location)

        with telemetry.tool_context_manager(self._user_agent):
            # If a corpus is not specified, create a new one.
            if corpus_id:
                # Make sure corpus exists
                self.corpus_name = rag.get_corpus(name=corpus_id).name
            else:
                self.corpus_name = rag.create_corpus(
                    display_name=corpus_display_name, description=corpus_description
                ).name

    def import_files(
        self,
        uris: Sequence[str],
        chunk_size: Optional[int] = None,
        chunk_overlap: Optional[int] = None,
        timeout: Optional[int] = None,
        **kwargs: Any,
    ) -> ImportRagFilesResponse:
        """Import Google Cloud Storage or Google Drive files into the index."""
        # Convert https://storage.googleapis.com URLs to gs:// format
        uris = [
            re.sub(r"^https://storage\.googleapis\.com/", "gs://", uri) for uri in uris
        ]

        with telemetry.tool_context_manager(self._user_agent):
            return rag.import_files(
                corpus=self.corpus_name,
                uris=uris,
                chunk_size=chunk_size,
                chunk_overlap=chunk_overlap,
                timeout=timeout,
                **kwargs,
            )

    def insert_file(
        self,
        file_path: str,
        metadata: Optional[dict] = None,
        **insert_kwargs: Any,
    ) -> Optional[str]:
        """Insert a local file into the index."""
        if metadata:
            display_name = metadata.get("display_name")
            description = metadata.get("description")

        with telemetry.tool_context_manager(self._user_agent):
            rag_file = rag.upload_file(
                corpus_name=self.corpus_name,
                path=file_path,
                display_name=display_name,
                description=description,
                **insert_kwargs,
            )

        return rag_file.name if rag_file else None

    def list_files(self) -> Sequence[str]:
        """List all files in the index."""
        files = []
        with telemetry.tool_context_manager(self._user_agent):
            for file in rag.list_files(corpus_name=self.corpus_name):
                files.append(file.name)
        return files

    def delete_file(self, file_name: str) -> None:
        """Delete file from the index."""
        with telemetry.tool_context_manager(self._user_agent):
            rag.delete_file(name=file_name, corpus_name=self.corpus_name)

    def as_query_engine(self, **kwargs: Any) -> BaseQueryEngine:
        from llama_index.core.query_engine.retriever_query_engine import (
            RetrieverQueryEngine,
        )

        kwargs["retriever"] = self.as_retriever(**kwargs)
        return RetrieverQueryEngine.from_args(**kwargs)

    def as_retriever(self, **kwargs: Any) -> BaseRetriever:
        """Return a Retriever for this managed index."""
        from llama_index.indices.managed.vertexai.retriever import (
            VertexAIRetriever,
        )

        similarity_top_k = kwargs.pop("similarity_top_k", None)
        vector_distance_threshold = kwargs.pop("vector_distance_threshold", None)

        return VertexAIRetriever(
            self.corpus_name,
            similarity_top_k,
            vector_distance_threshold,
            self._user_agent,
            **kwargs,
        )

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a set of documents (each a node)."""
        raise NotImplementedError("Node insertion is not supported.")

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        """Delete a document and it's nodes by using ref_doc_id."""
        if delete_from_docstore:
            with telemetry.tool_context_manager(self._user_agent):
                rag.delete_file(
                    name=ref_doc_id,
                    corpus_name=self.corpus_name,
                )

    def update_ref_doc(self, document: Document, **update_kwargs: Any) -> None:
        """Update a document and it's corresponding nodes."""
        raise NotImplementedError("Document update is not supported.")

import_files #

import_files(uris: Sequence[str], chunk_size: Optional[int] = None, chunk_overlap: Optional[int] = None, timeout: Optional[int] = None, **kwargs: Any) -> ImportRagFilesResponse

Import Google Cloud Storage or Google Drive files into the index.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def import_files(
    self,
    uris: Sequence[str],
    chunk_size: Optional[int] = None,
    chunk_overlap: Optional[int] = None,
    timeout: Optional[int] = None,
    **kwargs: Any,
) -> ImportRagFilesResponse:
    """Import Google Cloud Storage or Google Drive files into the index."""
    # Convert https://storage.googleapis.com URLs to gs:// format
    uris = [
        re.sub(r"^https://storage\.googleapis\.com/", "gs://", uri) for uri in uris
    ]

    with telemetry.tool_context_manager(self._user_agent):
        return rag.import_files(
            corpus=self.corpus_name,
            uris=uris,
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap,
            timeout=timeout,
            **kwargs,
        )

insert_file #

insert_file(file_path: str, metadata: Optional[dict] = None, **insert_kwargs: Any) -> Optional[str]

Insert a local file into the index.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def insert_file(
    self,
    file_path: str,
    metadata: Optional[dict] = None,
    **insert_kwargs: Any,
) -> Optional[str]:
    """Insert a local file into the index."""
    if metadata:
        display_name = metadata.get("display_name")
        description = metadata.get("description")

    with telemetry.tool_context_manager(self._user_agent):
        rag_file = rag.upload_file(
            corpus_name=self.corpus_name,
            path=file_path,
            display_name=display_name,
            description=description,
            **insert_kwargs,
        )

    return rag_file.name if rag_file else None

list_files #

list_files() -> Sequence[str]

List all files in the index.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
137
138
139
140
141
142
143
def list_files(self) -> Sequence[str]:
    """List all files in the index."""
    files = []
    with telemetry.tool_context_manager(self._user_agent):
        for file in rag.list_files(corpus_name=self.corpus_name):
            files.append(file.name)
    return files

delete_file #

delete_file(file_name: str) -> None

Delete file from the index.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
145
146
147
148
def delete_file(self, file_name: str) -> None:
    """Delete file from the index."""
    with telemetry.tool_context_manager(self._user_agent):
        rag.delete_file(name=file_name, corpus_name=self.corpus_name)

as_retriever #

as_retriever(**kwargs: Any) -> BaseRetriever

Return a Retriever for this managed index.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
    """Return a Retriever for this managed index."""
    from llama_index.indices.managed.vertexai.retriever import (
        VertexAIRetriever,
    )

    similarity_top_k = kwargs.pop("similarity_top_k", None)
    vector_distance_threshold = kwargs.pop("vector_distance_threshold", None)

    return VertexAIRetriever(
        self.corpus_name,
        similarity_top_k,
        vector_distance_threshold,
        self._user_agent,
        **kwargs,
    )

delete_ref_doc #

delete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a document and it's nodes by using ref_doc_id.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
179
180
181
182
183
184
185
186
187
188
def delete_ref_doc(
    self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
) -> None:
    """Delete a document and it's nodes by using ref_doc_id."""
    if delete_from_docstore:
        with telemetry.tool_context_manager(self._user_agent):
            rag.delete_file(
                name=ref_doc_id,
                corpus_name=self.corpus_name,
            )

update_ref_doc #

update_ref_doc(document: Document, **update_kwargs: Any) -> None

Update a document and it's corresponding nodes.

Source code in llama-index-integrations/indices/llama-index-indices-managed-vertexai/llama_index/indices/managed/vertexai/base.py
190
191
192
def update_ref_doc(self, document: Document, **update_kwargs: Any) -> None:
    """Update a document and it's corresponding nodes."""
    raise NotImplementedError("Document update is not supported.")