GoogleIndex #
Bases: BaseManagedIndex
Google's Generative AI Semantic vector store with AQA.
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|
from_corpus
classmethod
#
from_corpus(*, corpus_id: str, **kwargs: Any) -> IndexType
Creates a GoogleIndex from an existing corpus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
corpus_id |
str
|
ID of an existing corpus on Google's server. |
required |
Returns:
Type | Description |
---|---|
IndexType
|
An instance of GoogleIndex pointing to the specified corpus. |
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
create_corpus
classmethod
#
create_corpus(*, corpus_id: Optional[str] = None, display_name: Optional[str] = None, **kwargs: Any) -> IndexType
Creates a GoogleIndex from a new corpus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
corpus_id |
Optional[str]
|
ID of the new corpus to be created. If not provided, Google server will provide one. |
None
|
display_name |
Optional[str]
|
Title of the new corpus. If not provided, Google server will provide one. |
None
|
Returns:
Type | Description |
---|---|
IndexType
|
An instance of GoogleIndex pointing to the specified corpus. |
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
from_documents
classmethod
#
from_documents(documents: Sequence[Document], storage_context: Optional[StorageContext] = None, show_progress: bool = False, callback_manager: Optional[CallbackManager] = None, transformations: Optional[List[TransformComponent]] = None, embed_model: Optional[BaseEmbedding] = None, **kwargs: Any) -> IndexType
Build an index from a sequence of documents.
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
insert_documents #
insert_documents(documents: Sequence[Document], **kwargs: Any) -> None
Inserts a set of documents.
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
158 159 160 161 |
|
delete_ref_doc #
delete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None
Deletes a document and its nodes by using ref_doc_id.
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
163 164 165 166 167 |
|
update_ref_doc #
update_ref_doc(document: Document, **update_kwargs: Any) -> None
Updates a document and its corresponding nodes.
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
169 170 171 |
|
as_retriever #
as_retriever(**kwargs: Any) -> BaseRetriever
Returns a Retriever for this managed index.
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
173 174 175 |
|
as_query_engine #
as_query_engine(llm: Optional[LLMType] = None, temperature: float = 0.7, answer_style: Any = 1, safety_setting: List[Any] = [], **kwargs: Any) -> BaseQueryEngine
Returns the AQA engine for this index.
Example
query_engine = index.as_query_engine( temperature=0.7, answer_style=AnswerStyle.ABSTRACTIVE, safety_setting=[ SafetySetting( category=HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, ), ] )
Parameters:
Name | Type | Description | Default |
---|---|---|---|
temperature |
float
|
0.0 to 1.0. |
0.7
|
answer_style |
Any
|
See |
1
|
safety_setting |
List[Any]
|
See |
[]
|
Returns:
Type | Description |
---|---|
BaseQueryEngine
|
A query engine that uses Google's AQA model. The query engine will |
BaseQueryEngine
|
return a |
BaseQueryEngine
|
|
BaseQueryEngine
|
passages. These passages are the ones that were used to construct |
BaseQueryEngine
|
the grounded response. These passages will always have no score, |
BaseQueryEngine
|
the only way to mark them as attributed passages. Then, the list |
BaseQueryEngine
|
will follow with the originally provided passages, which will have |
BaseQueryEngine
|
a score from the retrieval. |
BaseQueryEngine
|
|
BaseQueryEngine
|
|
BaseQueryEngine
|
answer is likely correct. |
Source code in llama-index-integrations/indices/llama-index-indices-managed-google/llama_index/indices/managed/google/base.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|