Skip to content

Document summary

LlamaIndex data structures.

DocumentSummaryIndex #

Bases: BaseIndex[IndexDocumentSummary]

Document Summary Index.

Parameters:

Name Type Description Default
response_synthesizer BaseSynthesizer

A response synthesizer for generating summaries.

None
summary_query str

The query to use to generate the summary for each document.

DEFAULT_SUMMARY_QUERY
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
embed_summaries bool

Whether to embed the summaries. This is required for running the default embedding-based retriever. Defaults to True.

True
Source code in llama-index-core/llama_index/core/indices/document_summary/base.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
class DocumentSummaryIndex(BaseIndex[IndexDocumentSummary]):
    """Document Summary Index.

    Args:
        response_synthesizer (BaseSynthesizer): A response synthesizer for generating
            summaries.
        summary_query (str): The query to use to generate the summary for each document.
        show_progress (bool): Whether to show tqdm progress bars.
            Defaults to False.
        embed_summaries (bool): Whether to embed the summaries.
            This is required for running the default embedding-based retriever.
            Defaults to True.

    """

    index_struct_cls = IndexDocumentSummary

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[IndexDocumentSummary] = None,
        llm: Optional[LLM] = None,
        embed_model: Optional[BaseEmbedding] = None,
        storage_context: Optional[StorageContext] = None,
        response_synthesizer: Optional[BaseSynthesizer] = None,
        summary_query: str = DEFAULT_SUMMARY_QUERY,
        show_progress: bool = False,
        embed_summaries: bool = True,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._llm = llm or Settings.llm
        self._embed_model = embed_model or Settings.embed_model
        self._response_synthesizer = response_synthesizer or get_response_synthesizer(
            llm=self._llm, response_mode=ResponseMode.TREE_SUMMARIZE
        )
        self._summary_query = summary_query
        self._embed_summaries = embed_summaries

        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            storage_context=storage_context,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

    @property
    def vector_store(self) -> BasePydanticVectorStore:
        return self._vector_store

    def as_retriever(
        self,
        retriever_mode: Union[str, _RetrieverMode] = _RetrieverMode.EMBEDDING,
        **kwargs: Any,
    ) -> BaseRetriever:
        """Get retriever.

        Args:
            retriever_mode (Union[str, DocumentSummaryRetrieverMode]): A retriever mode.
                Defaults to DocumentSummaryRetrieverMode.EMBEDDING.

        """
        from llama_index.core.indices.document_summary.retrievers import (
            DocumentSummaryIndexEmbeddingRetriever,
            DocumentSummaryIndexLLMRetriever,
        )

        LLMRetriever = DocumentSummaryIndexLLMRetriever
        EmbeddingRetriever = DocumentSummaryIndexEmbeddingRetriever

        if retriever_mode == _RetrieverMode.EMBEDDING:
            if not self._embed_summaries:
                raise ValueError(
                    "Cannot use embedding retriever if embed_summaries is False"
                )

            return EmbeddingRetriever(
                self,
                object_map=self._object_map,
                embed_model=self._embed_model,
                **kwargs,
            )
        if retriever_mode == _RetrieverMode.LLM:
            return LLMRetriever(
                self, object_map=self._object_map, llm=self._llm, **kwargs
            )
        else:
            raise ValueError(f"Unknown retriever mode: {retriever_mode}")

    def get_document_summary(self, doc_id: str) -> str:
        """Get document summary by doc id.

        Args:
            doc_id (str): A document id.

        """
        if doc_id not in self._index_struct.doc_id_to_summary_id:
            raise ValueError(f"doc_id {doc_id} not in index")
        summary_id = self._index_struct.doc_id_to_summary_id[doc_id]
        return self.docstore.get_node(summary_id).get_content()

    def _add_nodes_to_index(
        self,
        index_struct: IndexDocumentSummary,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
    ) -> None:
        """Add nodes to index."""
        doc_id_to_nodes = defaultdict(list)
        for node in nodes:
            if node.ref_doc_id is None:
                raise ValueError(
                    "ref_doc_id of node cannot be None when building a document "
                    "summary index"
                )
            doc_id_to_nodes[node.ref_doc_id].append(node)

        summary_node_dict = {}
        items = doc_id_to_nodes.items()
        iterable_with_progress = get_tqdm_iterable(
            items, show_progress, "Summarizing documents"
        )

        for doc_id, nodes in iterable_with_progress:
            print(f"current doc id: {doc_id}")
            nodes_with_scores = [NodeWithScore(node=n) for n in nodes]
            # get the summary for each doc_id
            summary_response = self._response_synthesizer.synthesize(
                query=self._summary_query,
                nodes=nodes_with_scores,
            )
            summary_response = cast(Response, summary_response)
            docid_first_node = doc_id_to_nodes.get(doc_id, [TextNode()])[0]
            summary_node_dict[doc_id] = TextNode(
                text=summary_response.response,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(node_id=doc_id)
                },
                metadata=docid_first_node.metadata,
                excluded_embed_metadata_keys=docid_first_node.excluded_embed_metadata_keys,
                excluded_llm_metadata_keys=docid_first_node.excluded_llm_metadata_keys,
            )
            self.docstore.add_documents([summary_node_dict[doc_id]])
            logger.info(
                f"> Generated summary for doc {doc_id}: " f"{summary_response.response}"
            )

        for doc_id, nodes in doc_id_to_nodes.items():
            index_struct.add_summary_and_nodes(summary_node_dict[doc_id], nodes)

        if self._embed_summaries:
            summary_nodes = list(summary_node_dict.values())
            id_to_embed_map = embed_nodes(
                summary_nodes, self._embed_model, show_progress=show_progress
            )

            summary_nodes_with_embedding = []
            for node in summary_nodes:
                node_with_embedding = node.model_copy()
                node_with_embedding.embedding = id_to_embed_map[node.node_id]
                summary_nodes_with_embedding.append(node_with_embedding)
            self._vector_store.add(summary_nodes_with_embedding)

    def _build_index_from_nodes(
        self,
        nodes: Sequence[BaseNode],
        **build_kwargs: Any,
    ) -> IndexDocumentSummary:
        """Build index from nodes."""
        # first get doc_id to nodes_dict, generate a summary for each doc_id,
        # then build the index struct
        index_struct = IndexDocumentSummary()
        self._add_nodes_to_index(index_struct, nodes, self._show_progress)
        return index_struct

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        self._add_nodes_to_index(self._index_struct, nodes)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        pass

    def delete_nodes(
        self,
        node_ids: List[str],
        delete_from_docstore: bool = False,
        **delete_kwargs: Any,
    ) -> None:
        """Delete a list of nodes from the index.

        Args:
            node_ids (List[str]): A list of node_ids from the nodes to delete

        """
        index_nodes = self._index_struct.node_id_to_summary_id.keys()
        for node in node_ids:
            if node not in index_nodes:
                logger.warning(f"node_id {node} not found, will not be deleted.")
                node_ids.remove(node)

        self._index_struct.delete_nodes(node_ids)

        remove_summary_ids = [
            summary_id
            for summary_id in self._index_struct.summary_id_to_node_ids
            if len(self._index_struct.summary_id_to_node_ids[summary_id]) == 0
        ]

        remove_docs = [
            doc_id
            for doc_id in self._index_struct.doc_id_to_summary_id
            if self._index_struct.doc_id_to_summary_id[doc_id] in remove_summary_ids
        ]

        for doc_id in remove_docs:
            self.delete_ref_doc(doc_id)

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        """Delete a document from the index.
        All nodes in the index related to the document will be deleted.
        """
        ref_doc_info = self.docstore.get_ref_doc_info(ref_doc_id)
        if ref_doc_info is None:
            logger.warning(f"ref_doc_id {ref_doc_id} not found, nothing deleted.")
            return
        self._index_struct.delete(ref_doc_id)
        self._vector_store.delete(ref_doc_id)

        if delete_from_docstore:
            self.docstore.delete_ref_doc(ref_doc_id, raise_error=False)

        self._storage_context.index_store.add_index_struct(self._index_struct)

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        ref_doc_ids = list(self._index_struct.doc_id_to_summary_id.keys())

        all_ref_doc_info = {}
        for ref_doc_id in ref_doc_ids:
            ref_doc_info = self.docstore.get_ref_doc_info(ref_doc_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_doc_id] = ref_doc_info
        return all_ref_doc_info

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

as_retriever #

as_retriever(retriever_mode: Union[str, _RetrieverMode] = _RetrieverMode.EMBEDDING, **kwargs: Any) -> BaseRetriever

Get retriever.

Parameters:

Name Type Description Default
retriever_mode Union[str, DocumentSummaryRetrieverMode]

A retriever mode. Defaults to DocumentSummaryRetrieverMode.EMBEDDING.

EMBEDDING
Source code in llama-index-core/llama_index/core/indices/document_summary/base.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def as_retriever(
    self,
    retriever_mode: Union[str, _RetrieverMode] = _RetrieverMode.EMBEDDING,
    **kwargs: Any,
) -> BaseRetriever:
    """Get retriever.

    Args:
        retriever_mode (Union[str, DocumentSummaryRetrieverMode]): A retriever mode.
            Defaults to DocumentSummaryRetrieverMode.EMBEDDING.

    """
    from llama_index.core.indices.document_summary.retrievers import (
        DocumentSummaryIndexEmbeddingRetriever,
        DocumentSummaryIndexLLMRetriever,
    )

    LLMRetriever = DocumentSummaryIndexLLMRetriever
    EmbeddingRetriever = DocumentSummaryIndexEmbeddingRetriever

    if retriever_mode == _RetrieverMode.EMBEDDING:
        if not self._embed_summaries:
            raise ValueError(
                "Cannot use embedding retriever if embed_summaries is False"
            )

        return EmbeddingRetriever(
            self,
            object_map=self._object_map,
            embed_model=self._embed_model,
            **kwargs,
        )
    if retriever_mode == _RetrieverMode.LLM:
        return LLMRetriever(
            self, object_map=self._object_map, llm=self._llm, **kwargs
        )
    else:
        raise ValueError(f"Unknown retriever mode: {retriever_mode}")

get_document_summary #

get_document_summary(doc_id: str) -> str

Get document summary by doc id.

Parameters:

Name Type Description Default
doc_id str

A document id.

required
Source code in llama-index-core/llama_index/core/indices/document_summary/base.py
149
150
151
152
153
154
155
156
157
158
159
def get_document_summary(self, doc_id: str) -> str:
    """Get document summary by doc id.

    Args:
        doc_id (str): A document id.

    """
    if doc_id not in self._index_struct.doc_id_to_summary_id:
        raise ValueError(f"doc_id {doc_id} not in index")
    summary_id = self._index_struct.doc_id_to_summary_id[doc_id]
    return self.docstore.get_node(summary_id).get_content()

delete_nodes #

delete_nodes(node_ids: List[str], delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a list of nodes from the index.

Parameters:

Name Type Description Default
node_ids List[str]

A list of node_ids from the nodes to delete

required
Source code in llama-index-core/llama_index/core/indices/document_summary/base.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def delete_nodes(
    self,
    node_ids: List[str],
    delete_from_docstore: bool = False,
    **delete_kwargs: Any,
) -> None:
    """Delete a list of nodes from the index.

    Args:
        node_ids (List[str]): A list of node_ids from the nodes to delete

    """
    index_nodes = self._index_struct.node_id_to_summary_id.keys()
    for node in node_ids:
        if node not in index_nodes:
            logger.warning(f"node_id {node} not found, will not be deleted.")
            node_ids.remove(node)

    self._index_struct.delete_nodes(node_ids)

    remove_summary_ids = [
        summary_id
        for summary_id in self._index_struct.summary_id_to_node_ids
        if len(self._index_struct.summary_id_to_node_ids[summary_id]) == 0
    ]

    remove_docs = [
        doc_id
        for doc_id in self._index_struct.doc_id_to_summary_id
        if self._index_struct.doc_id_to_summary_id[doc_id] in remove_summary_ids
    ]

    for doc_id in remove_docs:
        self.delete_ref_doc(doc_id)

delete_ref_doc #

delete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a document from the index. All nodes in the index related to the document will be deleted.

Source code in llama-index-core/llama_index/core/indices/document_summary/base.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def delete_ref_doc(
    self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
) -> None:
    """Delete a document from the index.
    All nodes in the index related to the document will be deleted.
    """
    ref_doc_info = self.docstore.get_ref_doc_info(ref_doc_id)
    if ref_doc_info is None:
        logger.warning(f"ref_doc_id {ref_doc_id} not found, nothing deleted.")
        return
    self._index_struct.delete(ref_doc_id)
    self._vector_store.delete(ref_doc_id)

    if delete_from_docstore:
        self.docstore.delete_ref_doc(ref_doc_id, raise_error=False)

    self._storage_context.index_store.add_index_struct(self._index_struct)