Skip to content

Sagemaker endpoint

SageMakerEmbedding #

Bases: BaseEmbedding

Source code in llama-index-integrations/embeddings/llama-index-embeddings-sagemaker-endpoint/llama_index/embeddings/sagemaker_endpoint/base.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
class SageMakerEmbedding(BaseEmbedding):
    endpoint_name: str = Field(description="SageMaker Embedding endpoint name")
    endpoint_kwargs: Dict[str, Any] = Field(
        default={},
        description="Additional kwargs for the invoke_endpoint request.",
    )
    model_kwargs: Dict[str, Any] = Field(
        default={},
        description="kwargs to pass to the model.",
    )
    content_handler: BaseIOHandler = Field(
        default=DEFAULT_IO_HANDLER,
        description="used to serialize input, deserialize output, and remove a prefix.",
    )

    profile_name: Optional[str] = Field(
        description="The name of aws profile to use. If not given, then the default profile is used."
    )
    aws_access_key_id: Optional[str] = Field(description="AWS Access Key ID to use")
    aws_secret_access_key: Optional[str] = Field(
        description="AWS Secret Access Key to use"
    )
    aws_session_token: Optional[str] = Field(description="AWS Session Token to use")
    region_name: Optional[str] = Field(
        description="AWS region name to use. Uses region configured in AWS CLI if not passed"
    )
    max_retries: Optional[int] = Field(
        default=3,
        description="The maximum number of API retries.",
        gte=0,
    )
    timeout: Optional[float] = Field(
        default=60.0,
        description="The timeout, in seconds, for API requests.",
        gte=0,
    )
    _client: Any = PrivateAttr()
    _verbose: bool = PrivateAttr()

    def __init__(
        self,
        endpoint_name: str,
        endpoint_kwargs: Optional[Dict[str, Any]] = {},
        model_kwargs: Optional[Dict[str, Any]] = {},
        content_handler: BaseIOHandler = DEFAULT_IO_HANDLER,
        profile_name: Optional[str] = None,
        aws_access_key_id: Optional[str] = None,
        aws_secret_access_key: Optional[str] = None,
        aws_session_token: Optional[str] = None,
        region_name: Optional[str] = None,
        max_retries: Optional[int] = 3,
        timeout: Optional[float] = 60.0,
        embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
        callback_manager: Optional[CallbackManager] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        verbose: bool = False,
    ):
        if not endpoint_name:
            raise ValueError(
                "Missing required argument:`endpoint_name`"
                " Please specify the endpoint_name"
            )
        endpoint_kwargs = endpoint_kwargs or {}
        model_kwargs = model_kwargs or {}
        content_handler = content_handler

        super().__init__(
            endpoint_name=endpoint_name,
            endpoint_kwargs=endpoint_kwargs,
            model_kwargs=model_kwargs,
            content_handler=content_handler,
            embed_batch_size=embed_batch_size,
            profile_name=profile_name,
            region_name=region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            pydantic_program_mode=pydantic_program_mode,
            callback_manager=callback_manager,
        )
        self._client = get_aws_service_client(
            service_name="sagemaker-runtime",
            profile_name=profile_name,
            region_name=region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            max_retries=max_retries,
            timeout=timeout,
        )
        self._verbose = verbose

    @classmethod
    def class_name(self) -> str:
        return "SageMakerEmbedding"

    def _get_embedding(self, payload: List[str], **kwargs: Any) -> List[Embedding]:
        model_kwargs = {**self.model_kwargs, **kwargs}

        request_body = self.content_handler.serialize_input(
            request=payload, model_kwargs=model_kwargs
        )

        response = self._client.invoke_endpoint(
            EndpointName=self.endpoint_name,
            Body=request_body,
            ContentType=self.content_handler.content_type,
            Accept=self.content_handler.accept,
            **self.endpoint_kwargs,
        )["Body"]

        return self.content_handler.deserialize_output(response=response)

    def _get_query_embedding(self, query: str, **kwargs: Any) -> Embedding:
        query = query.replace("\n", " ")
        return self._get_embedding([query], **kwargs)[0]

    def _get_text_embedding(self, text: str, **kwargs: Any) -> Embedding:
        text = text.replace("\n", " ")
        return self._get_embedding([text], **kwargs)[0]

    def _get_text_embeddings(self, texts: List[str], **kwargs: Any) -> List[Embedding]:
        """
        Embed the input sequence of text synchronously.

        Subclasses can implement this method if batch queries are supported.
        """
        texts = [text.replace("\n", " ") for text in texts]

        # Default implementation just loops over _get_text_embedding
        return self._get_embedding(texts, **kwargs)

    async def _aget_query_embedding(self, query: str, **kwargs: Any) -> Embedding:
        raise NotImplementedError

    async def _aget_text_embedding(self, text: str, **kwargs: Any) -> Embedding:
        raise NotImplementedError

    async def _aget_text_embeddings(
        self, texts: List[str], **kwargs: Any
    ) -> List[Embedding]:
        raise NotImplementedError