Bases: BaseEmbedding
External embeddings (taken from Langchain).
Parameters:
Name |
Type |
Description |
Default |
langchain_embedding |
Embeddings
|
Langchain
embeddings class.
|
required
|
Source code in llama-index-integrations/embeddings/llama-index-embeddings-langchain/llama_index/embeddings/langchain/base.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 | class LangchainEmbedding(BaseEmbedding):
"""External embeddings (taken from Langchain).
Args:
langchain_embedding (langchain.embeddings.Embeddings): Langchain
embeddings class.
"""
_langchain_embedding: "LCEmbeddings" = PrivateAttr()
_async_not_implemented_warned: bool = PrivateAttr(default=False)
def __init__(
self,
langchain_embeddings: "LCEmbeddings",
model_name: Optional[str] = None,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
callback_manager: Optional[CallbackManager] = None,
):
# attempt to get a useful model name
if model_name is not None:
model_name = model_name
elif hasattr(langchain_embeddings, "model_name"):
model_name = langchain_embeddings.model_name
elif hasattr(langchain_embeddings, "model"):
model_name = langchain_embeddings.model
else:
model_name = type(langchain_embeddings).__name__
super().__init__(
embed_batch_size=embed_batch_size,
callback_manager=callback_manager,
model_name=model_name,
)
self._langchain_embedding = langchain_embeddings
@classmethod
def class_name(cls) -> str:
return "LangchainEmbedding"
def _async_not_implemented_warn_once(self) -> None:
if not self._async_not_implemented_warned:
print("Async embedding not available, falling back to sync method.")
self._async_not_implemented_warned = True
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
return self._langchain_embedding.embed_query(query)
async def _aget_query_embedding(self, query: str) -> List[float]:
try:
return await self._langchain_embedding.aembed_query(query)
except NotImplementedError:
# Warn the user that sync is being used
self._async_not_implemented_warn_once()
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> List[float]:
try:
embeds = await self._langchain_embedding.aembed_documents([text])
return embeds[0]
except NotImplementedError:
# Warn the user that sync is being used
self._async_not_implemented_warn_once()
return self._get_text_embedding(text)
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
return self._langchain_embedding.embed_documents([text])[0]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings."""
return self._langchain_embedding.embed_documents(texts)
|