Huggingface
HuggingFaceEmbedding #
Bases: BaseEmbedding
HuggingFace class for text embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from the Hugging Face Hub with that name. Defaults to DEFAULT_HUGGINGFACE_EMBEDDING_MODEL. |
DEFAULT_HUGGINGFACE_EMBEDDING_MODEL
|
max_length |
Optional[int]
|
Max sequence length to set in Model's config. If None, it will use the Model's default max_seq_length. Defaults to None. |
None
|
query_instruction |
Optional[str]
|
Instruction to prepend to query text. Defaults to None. |
None
|
text_instruction |
Optional[str]
|
Instruction to prepend to text. Defaults to None. |
None
|
normalize |
bool
|
Whether to normalize returned vectors. Defaults to True. |
True
|
embed_batch_size |
int
|
The batch size used for the computation. Defaults to DEFAULT_EMBED_BATCH_SIZE. |
DEFAULT_EMBED_BATCH_SIZE
|
cache_folder |
Optional[str]
|
Path to store models. Defaults to None. |
None
|
trust_remote_code |
bool
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. Defaults to False. |
False
|
device |
Optional[str]
|
Device (like "cuda", "cpu", "mps", "npu", ...) that should be used for computation. If None, checks if a GPU can be used. Defaults to None. |
None
|
callback_manager |
Optional[CallbackManager]
|
Callback Manager. Defaults to None. |
None
|
parallel_process |
bool
|
If True it will start a multi-process pool to process the encoding with several independent processes. Great for vast amount of texts. Defaults to False. |
False
|
target_devices |
Optional[List[str]]
|
PyTorch target devices, e.g.
["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...], or ["cpu", "cpu", "cpu", "cpu"].
If target_devices is None and CUDA/NPU is available, then all available CUDA/NPU devices
will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU devices
will be used. This parameter will only be used if |
None
|
num_workers |
int
|
The number of workers to use for async embedding calls. Defaults to None. |
required |
**model_kwargs |
Other model kwargs to use |
{}
|
|
tokenizer_name |
Optional[str]
|
"Deprecated" |
'deprecated'
|
pooling |
str
|
"Deprecated" |
'deprecated'
|
model |
Optional[Any]
|
"Deprecated" |
'deprecated'
|
tokenizer |
Optional[Any]
|
"Deprecated" |
'deprecated'
|
Examples:
pip install llama-index-embeddings-huggingface
from llama_index.core import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Set up the HuggingFaceEmbedding class with the required model to use with llamaindex core.
embed_model = HuggingFaceEmbedding(model_name = "BAAI/bge-small-en")
Settings.embed_model = embed_model
# Or if you want to Embed some text separately
embeddings = embed_model.get_text_embedding("I want to Embed this text!")
Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|
HuggingFaceInferenceAPIEmbedding #
Bases: BaseEmbedding
Wrapper on the Hugging Face's Inference API for embeddings.
Overview of the design: - Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction
Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
|
validate_supported #
validate_supported(task: str) -> None
Confirm the contained model_name is deployed on the Inference API service.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
str
|
Hugging Face task to check within. A list of all tasks can be found here: https://huggingface.co/tasks |
required |
Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
|
get_model_info #
get_model_info(**kwargs: Any) -> ModelInfo
Get metadata on the current model from Hugging Face.
Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
396 397 398 |
|