Skip to content

Alephalpha

AlephAlphaEmbedding #

Bases: BaseEmbedding

AlephAlphaEmbedding uses the Aleph Alpha API to generate embeddings for text.

Source code in llama-index-integrations/embeddings/llama-index-embeddings-alephalpha/llama_index/embeddings/alephalpha/base.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
class AlephAlphaEmbedding(BaseEmbedding):
    """AlephAlphaEmbedding uses the Aleph Alpha API to generate embeddings for text."""

    model: str = Field(
        default=DEFAULT_ALEPHALPHA_MODEL, description="The Aleph Alpha model to use."
    )
    token: str = Field(default=None, description="The Aleph Alpha API token.")
    representation: Optional[str] = Field(
        default=SemanticRepresentation.Query,
        description="The representation type to use for generating embeddings.",
    )
    compress_to_size: Optional[int] = Field(
        default=None,
        description="The size to compress the embeddings to.",
        gt=0,
    )
    base_url: Optional[str] = Field(
        default=DEFAULT_ALEPHALPHA_HOST, description="The hostname of the API base_url."
    )
    timeout: Optional[float] = Field(
        default=None, description="The timeout to use in seconds.", gte=0
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries.", gte=0
    )
    normalize: Optional[bool] = Field(
        default=False, description="Return normalized embeddings."
    )
    hosting: Optional[str] = Field(default=None, description="The hosting to use.")
    nice: bool = Field(default=False, description="Whether to be nice to the API.")
    verify_ssl: bool = Field(default=True, description="Whether to verify SSL.")
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the Aleph Alpha API."
    )

    # Instance variables initialized via Pydantic's mechanism
    _client: Any = PrivateAttr()
    _aclient: Any = PrivateAttr()

    def __init__(
        self,
        model: str = DEFAULT_ALEPHALPHA_MODEL,
        token: Optional[str] = None,
        representation: Optional[str] = None,
        base_url: Optional[str] = DEFAULT_ALEPHALPHA_HOST,
        hosting: Optional[str] = None,
        timeout: Optional[float] = None,
        max_retries: int = 10,
        nice: bool = False,
        verify_ssl: bool = True,
        additional_kwargs: Optional[Dict[str, Any]] = None,
    ):
        """
        A class representation for generating embeddings using the AlephAlpha API.

        Args:
            token: The token to use for the AlephAlpha API.
            model: The model to use for generating embeddings.
            base_url: The base URL of the AlephAlpha API.
            nice: Whether to use the "nice" mode for the AlephAlpha API.
            additional_kwargs: Additional kwargs for the AlephAlpha API.

        """
        additional_kwargs = additional_kwargs or {}

        super().__init__(
            model=model,
            representation=representation,
            base_url=base_url,
            token=token,
            nice=nice,
            additional_kwargs=additional_kwargs,
        )

        self.token = get_from_param_or_env("aa_token", token, "AA_TOKEN", "")

        if representation is not None and isinstance(representation, str):
            try:
                representation_enum = SemanticRepresentation[
                    representation.capitalize()
                ]
            except KeyError:
                raise ValueError(
                    f"{representation} is not a valid representation type. Available types are: {list(SemanticRepresentation.__members__.keys())}"
                )
            self.representation = representation_enum
        else:
            self.representation = representation

        self._client = None
        self._aclient = None

    @classmethod
    def class_name(cls) -> str:
        return "AlephAlphaEmbedding"

    def _get_credential_kwargs(self) -> Dict[str, Any]:
        return {
            "token": self.token,
            "host": self.base_url,
            "hosting": self.hosting,
            "request_timeout_seconds": self.timeout,
            "total_retries": self.max_retries,
            "nice": self.nice,
            "verify_ssl": self.verify_ssl,
        }

    def _get_client(self) -> Client:
        if self._client is None:
            self._client = Client(**self._get_credential_kwargs())
        return self._client

    def _get_aclient(self) -> AsyncClient:
        if self._aclient is None:
            self._aclient = AsyncClient(**self._get_credential_kwargs())
        return self._aclient

    def _get_embedding(self, text: str, representation: str) -> List[float]:
        """Embed sentence using AlephAlpha."""
        client = self._get_client()
        request = SemanticEmbeddingRequest(
            prompt=Prompt.from_text(text),
            representation=representation or self.representation,
            compress_to_size=self.compress_to_size,
            normalize=self.normalize,
        )
        result = client.semantic_embed(request=request, model=self.model)
        return result.embedding

    async def _aget_embedding(self, text: str, representation: str) -> List[float]:
        """Get embedding async."""
        aclient = self._get_aclient()
        request = SemanticEmbeddingRequest(
            prompt=Prompt.from_text(text),
            representation=representation or self.representation,
            compress_to_size=self.compress_to_size,
            normalize=self.normalize,
        )
        result = await aclient.semantic_embed(request=request, model=self.model)
        return result.embedding

    def _get_embeddings(
        self, texts: List[str], representation: str
    ) -> List[List[float]]:
        """Embed sentences using AlephAlpha."""
        client = self._get_client()
        request = BatchSemanticEmbeddingRequest(
            prompts=[Prompt.from_text(text) for text in texts],
            representation=representation or self.representation,
            compress_to_size=self.compress_to_size,
            normalize=self.normalize,
        )
        result: BatchSemanticEmbeddingResponse = client.batch_semantic_embed(
            request=request, model=self.model
        )
        return result.embeddings

    async def _aget_embeddings(
        self, texts: List[str], representation: str
    ) -> List[List[float]]:
        """Get embeddings async."""
        aclient = self._get_aclient()
        request = BatchSemanticEmbeddingRequest(
            prompts=[Prompt.from_text(text) for text in texts],
            representation=representation or self.representation,
            compress_to_size=self.compress_to_size,
            normalize=self.normalize,
        )
        result: BatchSemanticEmbeddingResponse = await aclient.batch_semantic_embed(
            request=request, model=self.model
        )
        return result.embeddings

    def _get_query_embedding(self, query: str) -> List[float]:
        """Get query embedding. For query embeddings, representation='query'."""
        return self._get_embedding(query, SemanticRepresentation.Query)

    async def _aget_query_embedding(self, query: str) -> List[float]:
        """Get query embedding async. For query embeddings, representation='query'."""
        return self._aget_embedding(query, SemanticRepresentation.Query)

    def _get_text_embedding(self, text: str) -> List[float]:
        """Get text embedding. For text embeddings, representation='document'."""
        return self._get_embedding(text, SemanticRepresentation.Document)

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """Get text embedding async."""
        return self._aget_embedding(text, SemanticRepresentation.Document)

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Get text embeddings."""
        return self._get_embeddings(texts, SemanticRepresentation.Document)

    async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Get text embeddings async."""
        return self._aget_embeddings(texts, SemanticRepresentation.Document)