Manual orchestration#
LlamaDeploy offers different abstraction layers for maximum flexibility. For example, if you don't need the API server, you can go down one layer and orchestrate the core components on your own. LlamaDeploy provides a simple way to self-manage the required services using configuration objects and helper functions.
Manual orchestration with Python wrappers#
LlamaDeploy provides a set of utility functions that wrap the lower-level Python API in order to simplify certain operations that are common when you need to orchestrate the different core components, let's see how to use them.
Running the Core System#
Note
When manually orchestrating a LlamaDeploy instance, generally you'll want to deploy the core components and workflows services each from their own python scripts (or docker images, etc.).
To manually orchestrate an instance, the first thing to do is to run the core services: message queue, control plane,
and orchestrator. To do so, you can use the deploy_core
function:
from llama_deploy import (
deploy_core,
ControlPlaneConfig,
SimpleMessageQueueConfig,
)
async def main():
# This will run forever until you interrupt the process, like by pressing CTRL+C
await deploy_core(
control_plane_config=ControlPlaneConfig(),
message_queue_config=SimpleMessageQueueConfig(),
)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
This will set up the basic infrastructure for your LlamaDeploy instance. You can customize the configuration to adjust TCP port numbers and basic settings, and choose the message queue backend of choice among those currently supported, for example Redis, Kafka or RabbiMQ.
Deploying a Workflow#
To run a workflow as a LlamaDeploy service, you need another Python process. You can easily have LlamaDeploy serving
your workflow by invoking the deploy_workflow
function like this:
from llama_deploy import (
deploy_workflow,
WorkflowServiceConfig,
ControlPlaneConfig,
SimpleMessageQueueConfig,
)
from llama_index.core.workflow import (
Context,
Event,
Workflow,
StartEvent,
StopEvent,
step,
)
class ProgressEvent(Event):
progress: str
# create a dummy workflow
class MyWorkflow(Workflow):
@step()
async def run_step(self, ctx: Context, ev: StartEvent) -> StopEvent:
# Your workflow logic here
arg1 = str(ev.get("arg1", ""))
result = arg1 + " result"
# stream events as steps run
ctx.write_event_to_stream(
ProgressEvent(progress="I am doing something!")
)
return StopEvent(result=result)
async def main():
# This will run forever until you interrupt the process, like by pressing CTRL+C
await deploy_workflow(
workflow=MyWorkflow(),
workflow_config=WorkflowServiceConfig(
host="127.0.0.1", port=8002, service_name="my_workflow"
),
control_plane_config=ControlPlaneConfig(),
)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
Assuming the previous Python snippet is still running, this will run your workflow as a service and register it with the existing control plane and message queue.
Interacting with your Deployment#
With all the building blocks running, you can interact with your workflow service using Client
from the Python SDK.
From another Python snippet:
from llama_deploy import Client, ControlPlaneConfig
# point the client to the running control plane from the previous steps
client = Client(control_plane_url="http://localhost:8001")
async def run_task():
session = await c1.core.sessions.create()
result = await session.run("my_workflow", arg="Hello World!")
print(result.result)
# prints 'Hello World! result'
If you want to see the event stream as well, you can do:
async def run_task_and_stream():
# create a session
session = await c1.core.sessions.create()
# kick off task run
task_id = session.run_nowait("my_workflow", arg="Hello Streaming!")
# stream events
async for event in session.get_task_result_stream(task_id):
print(event)
# get final result
final_result = await session.get_task_result(task_id)
print(final_result.result)
# prints 'Hello Streaming! result'
Deploying Nested Workflows#
Every Workflow
is capable of injecting and running nested workflows. For example
from llama_index.core.workflow import Workflow, StartEvent, StopEvent, step
class InnerWorkflow(Workflow):
@step()
async def run_step(self, ev: StartEvent) -> StopEvent:
arg1 = ev.get("arg1")
if not arg1:
raise ValueError("arg1 is required.")
return StopEvent(result=str(arg1) + "_result")
class OuterWorkflow(Workflow):
@step()
async def run_step(
self, ev: StartEvent, inner: InnerWorkflow
) -> StopEvent:
arg1 = ev.get("arg1")
if not arg1:
raise ValueError("arg1 is required.")
arg1 = await inner.run(arg1=arg1)
return StopEvent(result=str(arg1) + "_result")
inner = InnerWorkflow()
outer = OuterWorkflow()
outer.add_workflows(inner=InnerWorkflow())
LlamaDeploy makes it dead simple to spin up each workflow above as a service, and run everything without any changes to your code!
Just deploy each workflow:
Note
This code is launching both workflows from the same script, but these could easily be separate scripts, machines, or docker containers!
import asyncio
from llama_deploy import (
WorkflowServiceConfig,
ControlPlaneConfig,
deploy_workflow,
)
async def main():
inner_task = asyncio.create_task(
deploy_workflow(
inner,
WorkflowServiceConfig(
host="127.0.0.1", port=8003, service_name="inner"
),
ControlPlaneConfig(),
)
)
outer_task = asyncio.create_task(
deploy_workflow(
outer,
WorkflowServiceConfig(
host="127.0.0.1", port=8002, service_name="outer"
),
ControlPlaneConfig(),
)
)
# This will run forever until you interrupt the process, like by pressing CTRL+C
await asyncio.gather(inner_task, outer_task)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
And then use it as before:
from llama_deploy import Client
# points to deployed control plane
client = Client(control_plane_url="http://localhost:8001")
async def run_task():
session = await c1.core.sessions.create()
result = await session.run("outer", arg="Hello World!")
print(result.result)
# prints 'Hello World! result result'
Manual orchestration using the lower level Python API#
For more control over the LlamaDeploy setup process, you can use the lower-level API. In this section we'll see what
happens under the hood when you use wrappers like deploy_core
and deploy_workflow
that we saw in the previous
section.
deploy_core#
The deploy_core
function sets up the message queue, control plane, and orchestrator. Here's what it does:
async def deploy_core(
control_plane_config: ControlPlaneConfig,
message_queue_config: BaseSettings,
orchestrator_config: Optional[SimpleOrchestratorConfig] = None,
) -> None:
orchestrator_config = orchestrator_config or SimpleOrchestratorConfig()
message_queue_client = _get_message_queue_client(message_queue_config)
control_plane = ControlPlaneServer(
message_queue_client,
SimpleOrchestrator(**orchestrator_config.model_dump()),
**control_plane_config.model_dump(),
)
message_queue_task = None
if isinstance(message_queue_config, SimpleMessageQueueConfig):
message_queue_task = _deploy_local_message_queue(message_queue_config)
control_plane_task = asyncio.create_task(control_plane.launch_server())
# let services spin up
await asyncio.sleep(1)
# register the control plane as a consumer
control_plane_consumer_fn = await control_plane.register_to_message_queue()
consumer_task = asyncio.create_task(control_plane_consumer_fn())
# let things sync up
await asyncio.sleep(1)
# let things run
if message_queue_task:
all_tasks = [control_plane_task, consumer_task, message_queue_task]
else:
all_tasks = [control_plane_task, consumer_task]
shutdown_handler = _get_shutdown_handler(all_tasks)
loop = asyncio.get_event_loop()
while loop.is_running():
await asyncio.sleep(0.1)
signal.signal(signal.SIGINT, shutdown_handler)
for task in all_tasks:
if task.done() and task.exception(): # type: ignore
raise task.exception() # type: ignore
This function:
- Sets up the message queue client
- Creates the control plane server
- Launches the message queue (if using SimpleMessageQueue)
- Launches the control plane server
- Registers the control plane as a consumer
- Sets up a shutdown handler and keeps the event loop running
deploy_workflow#
The deploy_workflow
function deploys a workflow as a service. Here's what it does:
async def deploy_workflow(
workflow: Workflow,
workflow_config: WorkflowServiceConfig,
control_plane_config: ControlPlaneConfig,
) -> None:
control_plane_url = control_plane_config.url
async with httpx.AsyncClient() as client:
response = await client.get(f"{control_plane_url}/queue_config")
queue_config_dict = response.json()
message_queue_config = _get_message_queue_config(queue_config_dict)
message_queue_client = _get_message_queue_client(message_queue_config)
service = WorkflowService(
workflow=workflow,
message_queue=message_queue_client,
**workflow_config.model_dump(),
)
service_task = asyncio.create_task(service.launch_server())
# let service spin up
await asyncio.sleep(1)
# register to message queue
consumer_fn = await service.register_to_message_queue()
# register to control plane
control_plane_url = (
f"http://{control_plane_config.host}:{control_plane_config.port}"
)
await service.register_to_control_plane(control_plane_url)
# create consumer task
consumer_task = asyncio.create_task(consumer_fn())
# let things sync up
await asyncio.sleep(1)
all_tasks = [consumer_task, service_task]
shutdown_handler = _get_shutdown_handler(all_tasks)
loop = asyncio.get_event_loop()
while loop.is_running():
await asyncio.sleep(0.1)
signal.signal(signal.SIGINT, shutdown_handler)
for task in all_tasks:
if task.done() and task.exception(): # type: ignore
raise task.exception() # type: ignore
This function:
- Sets up the message queue client
- Creates a WorkflowService with the provided workflow
- Launches the service server
- Registers the service to the message queue
- Registers the service to the control plane
- Sets up a consumer task for the service
- Sets up a shutdown handler and keeps the event loop running