Vector Store Index usage examples¶
In this guide, we show how to use the vector store index with different vector store implementations.
From how to get started with few lines of code with the default in-memory vector store with default query configuration, to using a custom hosted vector store, with advanced settings such as metadata filters.
Construct vector store and index¶
Default
By default, VectorStoreIndex
uses a in-memory SimpleVectorStore
that's initialized as part of the default storage context.
from llama_index import VectorStoreIndex, SimpleDirectoryReader
# Load documents and build index
documents = SimpleDirectoryReader(
"../../examples/data/paul_graham"
).load_data()
index = VectorStoreIndex.from_documents(documents)
Custom vector stores
You can use a custom vector store (in this case PineconeVectorStore
) as follows:
import pinecone
from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext
from llama_index.vector_stores import PineconeVectorStore
# init pinecone
pinecone.init(api_key="<api_key>", environment="<environment>")
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
# construct vector store and customize storage context
storage_context = StorageContext.from_defaults(
vector_store=PineconeVectorStore(pinecone.Index("quickstart"))
)
# Load documents and build index
documents = SimpleDirectoryReader(
"../../examples/data/paul_graham"
).load_data()
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
For more examples of how to initialize different vector stores, see Vector Store Integrations.
Connect to external vector stores (with existing embeddings)¶
If you have already computed embeddings and dumped them into an external vector store (e.g. Pinecone, Chroma), you can use it with LlamaIndex by:
vector_store = PineconeVectorStore(pinecone.Index("quickstart"))
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
Configure standard query setting
To configure query settings, you can directly pass it as keyword args when building the query engine:
from llama_index.vector_stores.types import ExactMatchFilter, MetadataFilters
query_engine = index.as_query_engine(
similarity_top_k=3,
vector_store_query_mode="default",
filters=MetadataFilters(
filters=[
ExactMatchFilter(key="name", value="paul graham"),
]
),
alpha=None,
doc_ids=None,
)
response = query_engine.query("what did the author do growing up?")
Note that metadata filtering is applied against metadata specified in Node.metadata
.
Alternatively, if you are using the lower-level compositional API:
from llama_index import get_response_synthesizer
from llama_index.indices.vector_store.retrievers import VectorIndexRetriever
from llama_index.query_engine.retriever_query_engine import (
RetrieverQueryEngine,
)
# build retriever
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=3,
vector_store_query_mode="default",
filters=[ExactMatchFilter(key="name", value="paul graham")],
alpha=None,
doc_ids=None,
)
# build query engine
query_engine = RetrieverQueryEngine(
retriever=retriever, response_synthesizer=get_response_synthesizer()
)
# query
response = query_engine.query("what did the author do growing up?")
Configure vector store specific keyword arguments
You can customize keyword arguments unique to a specific vector store implementation as well by passing in vector_store_kwargs
query_engine = index.as_query_engine(
similarity_top_k=3,
# only works for pinecone
vector_store_kwargs={
"filter": {"name": "paul graham"},
},
)
response = query_engine.query("what did the author do growing up?")
Use an auto retriever
You can also use an LLM to automatically decide query setting for you! Right now, we support automatically setting exact match metadata filters and top k parameters.
from llama_index import get_response_synthesizer
from llama_index.indices.vector_store.retrievers import (
VectorIndexAutoRetriever,
)
from llama_index.query_engine.retriever_query_engine import (
RetrieverQueryEngine,
)
from llama_index.vector_stores.types import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description="Category of the celebrity, one of [Sports, Entertainment, Business, Music]",
),
MetadataInfo(
name="country",
type="str",
description="Country of the celebrity, one of [United States, Barbados, Portugal]",
),
],
)
# build retriever
retriever = VectorIndexAutoRetriever(
index, vector_store_info=vector_store_info
)
# build query engine
query_engine = RetrieverQueryEngine(
retriever=retriever, response_synthesizer=get_response_synthesizer()
)
# query
response = query_engine.query(
"Tell me about two celebrities from United States"
)