Customization Tutorial#

Tip

If you haven’t already, install LlamaIndex and complete the starter tutorial. If you run into terms you don’t recognize, check out the high-level concepts.

In this tutorial, we start with the code you wrote for the starter example and show you the most common ways you might want to customize it for your use case:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)

“I want to parse my documents into smaller chunks”

# Global settings
from llama_index.core import Settings

Settings.chunk_size = 512

# Local settings
from llama_index.core.node_parser import SentenceSplitter

index = VectorStoreIndex.from_documents(
    documents, transformations=[SentenceSplitter(chunk_size=512)]
)

“I want to use a different vector store”

First, you can install the vector store you want to use. For example, to use chromadb as the vector store, you can install it using pip:

pip install llama-index-chromadb

To learn more about all integrations available, checkout `LlamaHub <https://llamahub.ai`_.

Then, you can use it in your code:

import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext

chroma_client = chromadb.PersistentClient()
chroma_collection = chroma_client.create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

StorageContext defines the storage backend for where the documents, embeddings, and indexes are stored. You can learn more about storage and how to customize it.

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)

“I want to retrieve more context when I query”

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine(similarity_top_k=5)
response = query_engine.query("What did the author do growing up?")
print(response)

as_query_engine builds a default retriever and query engine on top of the index. You can configure the retriever and query engine by passing in keyword arguments. Here, we configure the retriever to return the top 5 most similar documents (instead of the default of 2). You can learn more about retrievers and query engines


“I want to use a different LLM”

# Global settings
from llama_index.core import Settings
from llama_index.llms.ollama import Ollama

Settings.llm = Ollama(model="mistral", request_timeout=60.0)

# Local settings
index.as_query_engine(llm=Ollama(model="mistral", request_timeout=60.0))

You can learn more about customizing LLMs.


“I want to use a different response mode”

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine(response_mode="tree_summarize")
response = query_engine.query("What did the author do growing up?")
print(response)

You can learn more about query engines and response modes.


“I want to stream the response back”

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query("What did the author do growing up?")
response.print_response_stream()

You can learn more about streaming responses.


“I want a chatbot instead of Q&A”

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_chat_engine()
response = query_engine.chat("What did the author do growing up?")
print(response)

response = query_engine.chat("Oh interesting, tell me more.")
print(response)

Learn more about the chat engine.


Next Steps

  • want a thorough walkthrough of (almost) everything you can configure? Get started with Understanding LlamaIndex.

  • want more in-depth understanding of specific modules? Check out the module guides in the left nav 👈