MultiStep Query Engine¶
The MultiStepQueryEngine
breaks down a complex query into sequential sub-questions.
To answer the query: In which city did the author found his first company, Viaweb?, we need to answer the following sub-questions sequentially:
- Who is the author that founded his first company, Viaweb?
- In which city did Paul Graham found his first company, Viaweb?
As an example, the answer from each step (sub-query-1) is used to generate the next step's question (sub-query-2), with steps created sequentially rather than all at once.
In this notebook, we will implement the same with MultiStepQueryEngine using workflows.
!pip install -U llama-index
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
Since workflows are async first, this all runs fine in a notebook. If you were running in your own code, you would want to use asyncio.run()
to start an async event loop if one isn't already running.
async def main():
<async code>
if __name__ == "__main__":
import asyncio
asyncio.run(main())
The Workflow¶
Designing the Workflow¶
MultiStepQueryEngine consists of some clearly defined steps
- Indexing data, creating an index.
- Create multiple sub-queries to answer the query.
- Synthesize the final response
With this in mind, we can create events and workflow steps to follow this process!
The Workflow Event¶
To handle these steps, we need to define QueryMultiStepEvent
The other steps will use the built-in StartEvent
and StopEvent
events.
Define Event¶
from llama_index.core.workflow import Event
from typing import Dict, List, Any
from llama_index.core.schema import NodeWithScore
class QueryMultiStepEvent(Event):
"""
Event containing results of a multi-step query process.
Attributes:
nodes (List[NodeWithScore]): List of nodes with their associated scores.
source_nodes (List[NodeWithScore]): List of source nodes with their scores.
final_response_metadata (Dict[str, Any]): Metadata associated with the final response.
"""
nodes: List[NodeWithScore]
source_nodes: List[NodeWithScore]
final_response_metadata: Dict[str, Any]
[nltk_data] Downloading package punkt_tab to [nltk_data] /Users/ravithejad/Desktop/llamaindex/lib/python3.9/sit [nltk_data] e-packages/llama_index/core/_static/nltk_cache... [nltk_data] Package punkt_tab is already up-to-date!
Define Workflow¶
from llama_index.core.indices.query.query_transform.base import (
StepDecomposeQueryTransform,
)
from llama_index.core.response_synthesizers import (
get_response_synthesizer,
)
from llama_index.core.schema import QueryBundle, TextNode
from llama_index.core.workflow import (
Context,
Workflow,
StartEvent,
StopEvent,
step,
)
from llama_index.core import Settings
from llama_index.core.llms import LLM
from typing import cast
from IPython.display import Markdown, display
class MultiStepQueryEngineWorkflow(Workflow):
def combine_queries(
self,
query_bundle: QueryBundle,
prev_reasoning: str,
index_summary: str,
llm: LLM,
) -> QueryBundle:
"""Combine queries using StepDecomposeQueryTransform."""
transform_metadata = {
"prev_reasoning": prev_reasoning,
"index_summary": index_summary,
}
return StepDecomposeQueryTransform(llm=llm)(
query_bundle, metadata=transform_metadata
)
def default_stop_fn(self, stop_dict: Dict) -> bool:
"""Stop function for multi-step query combiner."""
query_bundle = cast(QueryBundle, stop_dict.get("query_bundle"))
if query_bundle is None:
raise ValueError("Response must be provided to stop function.")
return "none" in query_bundle.query_str.lower()
@step
async def query_multistep(
self, ctx: Context, ev: StartEvent
) -> QueryMultiStepEvent:
"""Execute multi-step query process."""
prev_reasoning = ""
cur_response = None
should_stop = False
cur_steps = 0
# use response
final_response_metadata: Dict[str, Any] = {"sub_qa": []}
text_chunks = []
source_nodes = []
query = ev.get("query")
await ctx.set("query", ev.get("query"))
llm = Settings.llm
stop_fn = self.default_stop_fn
num_steps = ev.get("num_steps")
query_engine = ev.get("query_engine")
index_summary = ev.get("index_summary")
while not should_stop:
if num_steps is not None and cur_steps >= num_steps:
should_stop = True
break
elif should_stop:
break
updated_query_bundle = self.combine_queries(
QueryBundle(query_str=query),
prev_reasoning,
index_summary,
llm,
)
print(
f"Created query for the step - {cur_steps} is: {updated_query_bundle}"
)
stop_dict = {"query_bundle": updated_query_bundle}
if stop_fn(stop_dict):
should_stop = True
break
cur_response = query_engine.query(updated_query_bundle)
# append to response builder
cur_qa_text = (
f"\nQuestion: {updated_query_bundle.query_str}\n"
f"Answer: {cur_response!s}"
)
text_chunks.append(cur_qa_text)
for source_node in cur_response.source_nodes:
source_nodes.append(source_node)
# update metadata
final_response_metadata["sub_qa"].append(
(updated_query_bundle.query_str, cur_response)
)
prev_reasoning += (
f"- {updated_query_bundle.query_str}\n" f"- {cur_response!s}\n"
)
cur_steps += 1
nodes = [
NodeWithScore(node=TextNode(text=text_chunk))
for text_chunk in text_chunks
]
return QueryMultiStepEvent(
nodes=nodes,
source_nodes=source_nodes,
final_response_metadata=final_response_metadata,
)
@step
async def synthesize(
self, ctx: Context, ev: QueryMultiStepEvent
) -> StopEvent:
"""Synthesize the response."""
response_synthesizer = get_response_synthesizer()
query = await ctx.get("query", default=None)
final_response = await response_synthesizer.asynthesize(
query=query,
nodes=ev.nodes,
additional_source_nodes=ev.source_nodes,
)
final_response.metadata = ev.final_response_metadata
return StopEvent(result=final_response)
Download Data¶
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
--2024-08-26 14:16:04-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 2606:50c0:8000::154, 2606:50c0:8002::154, 2606:50c0:8001::154, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|2606:50c0:8000::154|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 75042 (73K) [text/plain] Saving to: ‘data/paul_graham/paul_graham_essay.txt’ data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.01s 2024-08-26 14:16:04 (6.91 MB/s) - ‘data/paul_graham/paul_graham_essay.txt’ saved [75042/75042]
Load data¶
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("data/paul_graham").load_data()
Setup LLM¶
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
Settings.llm = llm
Create Index and QueryEngine¶
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_documents(
documents=documents,
)
query_engine = index.as_query_engine()
Run the Workflow!¶
w = MultiStepQueryEngineWorkflow(timeout=200)
Set the parameters¶
# Sets maximum number of steps taken to answer the query.
num_steps = 3
# Set summary of the index, useful to create modified query at each step.
index_summary = "Used to answer questions about the author"
Test with a query¶
query = "In which city did the author found his first company, Viaweb?"
Result¶
result = await w.run(
query=query,
query_engine=query_engine,
index_summary=index_summary,
num_steps=num_steps,
)
# If created query in a step is None, the process will be stopped.
display(
Markdown("> Question: {}".format(query)),
Markdown("Answer: {}".format(result)),
)
Created query for the step - 0 is: Who is the author who founded Viaweb? Created query for the step - 1 is: In which city did Paul Graham found his first company, Viaweb? Created query for the step - 2 is: None
Question: In which city did the author found his first company, Viaweb?
Answer: The author founded his first company, Viaweb, in Cambridge.
Display step-queries created¶
sub_qa = result.metadata["sub_qa"]
tuples = [(t[0], t[1].response) for t in sub_qa]
display(Markdown(f"{tuples}"))
[('Who is the author who founded Viaweb?', 'The author who founded Viaweb is Paul Graham.'), ('In which city did Paul Graham found his first company, Viaweb?', 'Paul Graham founded his first company, Viaweb, in Cambridge.')]