Bagel Vector Store¶
If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
In [ ]:
Copied!
%pip install llama-index-vector-stores-bagel
%pip install llama-index
%pip install bagelML
%pip install llama-index-vector-stores-bagel
%pip install llama-index
%pip install bagelML
In [ ]:
Copied!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]:
Copied!
# set up OpenAI
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
# set up OpenAI
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
In [ ]:
Copied!
import os
# Set environment variable
os.environ["BAGEL_API_KEY"] = getpass.getpass("Bagel API Key:")
import os
# Set environment variable
os.environ["BAGEL_API_KEY"] = getpass.getpass("Bagel API Key:")
In [ ]:
Copied!
import bagel
from bagel import Settings
import bagel
from bagel import Settings
In [ ]:
Copied!
server_settings = Settings(
bagel_api_impl="rest", bagel_server_host="api.bageldb.ai"
)
client = bagel.Client(server_settings)
collection = client.get_or_create_cluster(
"testing_embeddings_3", embedding_model="custom", dimension=1536
)
server_settings = Settings(
bagel_api_impl="rest", bagel_server_host="api.bageldb.ai"
)
client = bagel.Client(server_settings)
collection = client.get_or_create_cluster(
"testing_embeddings_3", embedding_model="custom", dimension=1536
)
In [ ]:
Copied!
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.bagel import BagelVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.bagel import BagelVectorStore
In [ ]:
Copied!
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
In [ ]:
Copied!
vector_store = BagelVectorStore(collection=collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
vector_store = BagelVectorStore(collection=collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
In [ ]:
Copied!
index = VectorStoreIndex(nodes, storage_context=storage_context)
index = VectorStoreIndex(nodes, storage_context=storage_context)
In [ ]:
Copied!
from llama_index.core.retrievers import VectorIndexAutoRetriever
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
retriever = VectorIndexAutoRetriever(
index, vector_store_info=vector_store_info
)
from llama_index.core.retrievers import VectorIndexAutoRetriever
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
retriever = VectorIndexAutoRetriever(
index, vector_store_info=vector_store_info
)
In [ ]:
Copied!
retriever.retrieve("celebrity")
retriever.retrieve("celebrity")