Open In Colab

%pip install llama-index-vector-stores-weaviate
%pip install llama-index-embeddings-huggingface
!pip install llama-index

Advanced Ingestion Pipeline#

In this notebook, we implement an IngestionPipeline with the following features

  • MongoDB transformation caching

  • Automatic vector databse insertion

  • A custom transformation

Redis Cache Setup#

All node + transformation combinations will have their outputs cached, which will save time on duplicate runs.

from llama_index.core.ingestion.cache import RedisCache
from llama_index.core.ingestion import IngestionCache

ingest_cache = IngestionCache(
    cache=RedisCache.from_host_and_port(host="127.0.0.1", port=6379),
    collection="my_test_cache",
)

Vector DB Setup#

For this example, we use weaviate as a vector store.

!pip install weaviate-client
import weaviate

auth_config = weaviate.AuthApiKey(api_key="...")

client = weaviate.Client(url="https://...", auth_client_secret=auth_config)
from llama_index.vector_stores.weaviate import WeaviateVectorStore

vector_store = WeaviateVectorStore(
    weaviate_client=client, index_name="CachingTest"
)

Transformation Setup#

from llama_index.core.node_parser import TokenTextSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding

text_splitter = TokenTextSplitter(chunk_size=512)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
/home/loganm/.cache/pypoetry/virtualenvs/llama-index-4a-wkI5X-py3.11/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
Downloading (…)lve/main/config.json: 100%|██████████| 743/743 [00:00<00:00, 3.51MB/s]
Downloading pytorch_model.bin: 100%|██████████| 134M/134M [00:03<00:00, 34.6MB/s] 
Downloading (…)okenizer_config.json: 100%|██████████| 366/366 [00:00<00:00, 2.20MB/s]
Downloading (…)solve/main/vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 2.47MB/s]
Downloading (…)/main/tokenizer.json: 100%|██████████| 711k/711k [00:00<00:00, 7.34MB/s]
Downloading (…)cial_tokens_map.json: 100%|██████████| 125/125 [00:00<00:00, 620kB/s]

Custom Transformation#

import re
from llama_index.core.schema import TransformComponent


class TextCleaner(TransformComponent):
    def __call__(self, nodes, **kwargs):
        for node in nodes:
            node.text = re.sub(r"[^0-9A-Za-z ]", "", node.text)
        return nodes

Running the pipeline#

from llama_index.core.ingestion import IngestionPipeline

pipeline = IngestionPipeline(
    transformations=[
        TextCleaner(),
        text_splitter,
        embed_model,
        TitleExtractor(),
    ],
    vector_store=vector_store,
    cache=ingest_cache,
)
from llama_index.core import SimpleDirectoryReader

documents = SimpleDirectoryReader("../data/paul_graham/").load_data()
nodes = pipeline.run(documents=documents)

Using our populated vector store#

import os

# needed for the LLM in the query engine
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import VectorStoreIndex

index = VectorStoreIndex.from_vector_store(
    vector_store=vector_store,
    embed_model=embed_model,
)
query_engine = index.as_query_engine()

print(query_engine.query("What did the author do growing up?"))
The author worked on writing and programming growing up. They wrote short stories and also tried programming on an IBM 1401 computer using an early version of Fortran.

Re-run Ingestion to test Caching#

The next code block will execute almost instantly due to caching.

pipeline = IngestionPipeline(
    transformations=[TextCleaner(), text_splitter, embed_model],
    cache=ingest_cache,
)

nodes = pipeline.run(documents=documents)

Clear the cache#

ingest_cache.clear()