Contextual Retrieval¶
In this notebook we will demonstrate how you can implement Anthropic's Contextual Retrieval using LlamaIndex abstractions.
We will use:
Paul Graham Essay
dataset.- Anthropic LLM for context creation for each chunk.
- OpenAI LLM for Synthetic query generation and embedding model.
- CohereAI Reranker.
Installation¶
!pip install -U llama-index llama-index-llms-anthropic llama-index-postprocessor-cohere-rerank llama-index-retrievers-bm25 stemmer
import nest_asyncio
nest_asyncio.apply()
Setup API Keys¶
import os
# For creating context for each chunk
os.environ["ANTHROPIC_API_KEY"] = "<YOUR ANTHROPIC API KEY>"
# For creating synthetic dataset and embedding model
os.environ["OPENAI_API_KEY"] = "<YOUR OPENAI API KEY>"
# For reranker
os.environ["COHERE_API_KEY"] = "<YOUR COHEREAI API KEY>"
Setup LLM and Embedding model¶
from llama_index.llms.anthropic import Anthropic
llm_anthropic = Anthropic(model="claude-3-5-sonnet-20240620")
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.embed_model = OpenAIEmbedding()
Download Data¶
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O './paul_graham_essay.txt'
--2024-10-01 13:00:06-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 75042 (73K) [text/plain] Saving to: ‘./paul_graham_essay.txt’ ./paul_graham_essay 100%[===================>] 73.28K --.-KB/s in 0.08s 2024-10-01 13:00:06 (921 KB/s) - ‘./paul_graham_essay.txt’ saved [75042/75042]
Load Data¶
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./paul_graham_essay.txt"],
).load_data()
WHOLE_DOCUMENT = documents[0].text
prompt_document = """<document>
{WHOLE_DOCUMENT}
</document>"""
prompt_chunk = """Here is the chunk we want to situate within the whole document
<chunk>
{CHUNK_CONTENT}
</chunk>
Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else."""
Utils¶
create_contextual_nodes
- Function to create contextual nodes for a list of nodes.create_embedding_retriever
- Function to create an embedding retriever for a list of nodes.create_bm25_retriever
- Function to create a bm25 retriever for a list of nodes.EmbeddingBM25RerankerRetriever
- Custom retriever that uses both embedding and bm25 retrievers and reranker.create_eval_dataset
- Function to create a evaluation dataset from a list of nodes.set_node_ids
- Function to set node ids for a list of nodes.retrieval_results
- Function to get retrieval results for a retriever and evaluation dataset.display_results
- Function to display results fromretrieval_results
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.evaluation import (
generate_question_context_pairs,
RetrieverEvaluator,
)
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from llama_index.core.schema import NodeWithScore
from llama_index.core import VectorStoreIndex, QueryBundle
from llama_index.core.llms import ChatMessage
import pandas as pd
import copy
import Stemmer
from typing import List
def create_contextual_nodes(nodes_):
"""Function to create contextual nodes for a list of nodes"""
nodes_modified = []
for node in nodes_:
new_node = copy.deepcopy(node)
messages = [
ChatMessage(role="system", content="You are helpful AI Assitant."),
ChatMessage(
role="user",
content=[
{
"text": prompt_document.format(
WHOLE_DOCUMENT=WHOLE_DOCUMENT
),
"type": "text",
"cache_control": {"type": "ephemeral"},
},
{
"text": prompt_chunk.format(CHUNK_CONTENT=node.text),
"type": "text",
},
],
),
]
new_node.metadata["context"] = str(
llm_anthropic.chat(
messages,
extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"},
)
)
nodes_modified.append(new_node)
return nodes_modified
def create_embedding_retriever(nodes_, similarity_top_k=2):
"""Function to create an embedding retriever for a list of nodes"""
vector_index = VectorStoreIndex(nodes_)
retriever = vector_index.as_retriever(similarity_top_k=similarity_top_k)
return retriever
def create_bm25_retriever(nodes_, similarity_top_k=2):
"""Function to create a bm25 retriever for a list of nodes"""
bm25_retriever = BM25Retriever.from_defaults(
nodes=nodes_,
similarity_top_k=similarity_top_k,
stemmer=Stemmer.Stemmer("english"),
language="english",
)
return bm25_retriever
def create_eval_dataset(nodes_, llm, num_questions_per_chunk=2):
"""Function to create a evaluation dataset for a list of nodes"""
qa_dataset = generate_question_context_pairs(
nodes_, llm=llm, num_questions_per_chunk=num_questions_per_chunk
)
return qa_dataset
def set_node_ids(nodes_):
"""Function to set node ids for a list of nodes"""
# by default, the node ids are set to random uuids. To ensure same id's per run, we manually set them.
for index, node in enumerate(nodes_):
node.id_ = f"node_{index}"
return nodes_
async def retrieval_results(retriever, eval_dataset):
"""Function to get retrieval results for a retriever and evaluation dataset"""
metrics = ["hit_rate", "mrr", "precision", "recall", "ap", "ndcg"]
retriever_evaluator = RetrieverEvaluator.from_metric_names(
metrics, retriever=retriever
)
eval_results = await retriever_evaluator.aevaluate_dataset(qa_dataset)
return eval_results
def display_results(name, eval_results):
"""Display results from evaluate."""
metrics = ["hit_rate", "mrr", "precision", "recall", "ap", "ndcg"]
metric_dicts = []
for eval_result in eval_results:
metric_dict = eval_result.metric_vals_dict
metric_dicts.append(metric_dict)
full_df = pd.DataFrame(metric_dicts)
columns = {
"retrievers": [name],
**{k: [full_df[k].mean()] for k in metrics},
}
metric_df = pd.DataFrame(columns)
return metric_df
class EmbeddingBM25RerankerRetriever(BaseRetriever):
"""Custom retriever that uses both embedding and bm25 retrievers and reranker"""
def __init__(
self,
vector_retriever: VectorIndexRetriever,
bm25_retriever: BM25Retriever,
reranker: CohereRerank,
) -> None:
"""Init params."""
self._vector_retriever = vector_retriever
self.bm25_retriever = bm25_retriever
self.reranker = reranker
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve nodes given query."""
vector_nodes = self._vector_retriever.retrieve(query_bundle)
bm25_nodes = self.bm25_retriever.retrieve(query_bundle)
vector_nodes.extend(bm25_nodes)
retrieved_nodes = self.reranker.postprocess_nodes(
vector_nodes, query_bundle
)
return retrieved_nodes
Create Nodes¶
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter(chunk_size=1024, chunk_overlap=200)
nodes = node_parser.get_nodes_from_documents(documents, show_progress=False)
Set node ids¶
Useful to have consistent result comparison for nodes with and without contextual text.
# set node ids
nodes = set_node_ids(nodes)
nodes[0].metadata
{'file_path': 'paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-10-01', 'last_modified_date': '2024-10-01'}
Create contextual nodes¶
nodes_contextual = create_contextual_nodes(nodes)
nodes[0].metadata, nodes_contextual[0].metadata
({'file_path': 'paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-10-01', 'last_modified_date': '2024-10-01'}, {'file_path': 'paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-10-01', 'last_modified_date': '2024-10-01', 'context': 'assistant: This chunk is the opening section of Paul Graham\'s essay "What I Worked On," describing his early experiences with programming and writing as a teenager, his initial interest in philosophy in college, and his subsequent shift to studying artificial intelligence in the mid-1980s.'})
Set similarity_top_k
¶
similarity_top_k = 3
Set CohereReranker
¶
from llama_index.postprocessor.cohere_rerank import CohereRerank
cohere_rerank = CohereRerank(
api_key=os.environ["COHERE_API_KEY"], top_n=similarity_top_k
)
Create retrievers.¶
- Embedding based retriever.
- BM25 based retriever.
- Embedding + BM25 + Cohere reranker retriever.
embedding_retriever = create_embedding_retriever(
nodes, similarity_top_k=similarity_top_k
)
bm25_retriever = create_bm25_retriever(
nodes, similarity_top_k=similarity_top_k
)
embedding_bm25_retriever_rerank = EmbeddingBM25RerankerRetriever(
embedding_retriever, bm25_retriever, reranker=cohere_rerank
)
DEBUG:bm25s:Building index from IDs objects
Create retrievers using contextual nodes.¶
contextual_embedding_retriever = create_embedding_retriever(
nodes_contextual, similarity_top_k=similarity_top_k
)
contextual_bm25_retriever = create_bm25_retriever(
nodes_contextual, similarity_top_k=similarity_top_k
)
contextual_embedding_bm25_retriever_rerank = EmbeddingBM25RerankerRetriever(
contextual_embedding_retriever,
contextual_bm25_retriever,
reranker=cohere_rerank,
)
DEBUG:bm25s:Building index from IDs objects
Create Synthetic query dataset¶
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
qa_dataset = create_eval_dataset(nodes, llm=llm, num_questions_per_chunk=2)
100%|██████████| 21/21 [02:59<00:00, 8.53s/it]
list(qa_dataset.queries.values())[1]
"The author initially intended to study philosophy in college but later switched to AI. Discuss the reasons behind this shift in interest and how specific influences like Heinlein's novel and Winograd's SHRDLU contributed to his decision."
Evaluate retrievers with and without contextual nodes¶
embedding_retriever_results = await retrieval_results(
embedding_retriever, qa_dataset
)
bm25_retriever_results = await retrieval_results(bm25_retriever, qa_dataset)
embedding_bm25_retriever_rerank_results = await retrieval_results(
embedding_bm25_retriever_rerank, qa_dataset
)
contextual_embedding_retriever_results = await retrieval_results(
contextual_embedding_retriever, qa_dataset
)
contextual_bm25_retriever_results = await retrieval_results(
contextual_bm25_retriever, qa_dataset
)
contextual_embedding_bm25_retriever_rerank_results = await retrieval_results(
contextual_embedding_bm25_retriever_rerank, qa_dataset
)
Display results¶
Without Context¶
pd.concat(
[
display_results("Embedding Retriever", embedding_retriever_results),
display_results("BM25 Retriever", bm25_retriever_results),
display_results(
"Embedding + BM25 Retriever + Reranker",
embedding_bm25_retriever_rerank_results,
),
],
ignore_index=True,
axis=0,
)
retrievers | hit_rate | mrr | precision | recall | ap | ndcg | |
---|---|---|---|---|---|---|---|
0 | Embedding Retriever | 0.857143 | 0.726190 | 0.285714 | 0.857143 | 0.726190 | 0.356613 |
1 | BM25 Retriever | 0.904762 | 0.777778 | 0.301587 | 0.904762 | 0.777778 | 0.380157 |
2 | Embedding + BM25 Retriever + Reranker | 0.952381 | 0.865079 | 0.456349 | 0.952381 | 0.865079 | 0.530172 |
With Context¶
pd.concat(
[
display_results(
"Contextual Embedding Retriever",
contextual_embedding_retriever_results,
),
display_results(
"Contextual BM25 Retriever", contextual_bm25_retriever_results
),
display_results(
"Contextual Embedding + Contextual BM25 Retriever + Reranker",
contextual_embedding_bm25_retriever_rerank_results,
),
],
ignore_index=True,
axis=0,
)
retrievers | hit_rate | mrr | precision | recall | ap | ndcg | |
---|---|---|---|---|---|---|---|
0 | Contextual Embedding Retriever | 0.928571 | 0.746032 | 0.309524 | 0.928571 | 0.746032 | 0.372175 |
1 | Contextual BM25 Retriever | 0.952381 | 0.829365 | 0.317460 | 0.952381 | 0.829365 | 0.403967 |
2 | Contextual Embedding + Contextual BM25 Retriev... | 0.976190 | 0.900794 | 0.476190 | 0.976190 | 0.900794 | 0.555746 |
Observation:¶
We observed improved metrics with contextual retrieval; however, our experiments showed that much depends on the queries, chunk size, chunk overlap, and other variables. Therefore, it’s essential to experiment to optimize the benefits of this technique.