Skip to content

Simple

Simple vector store index.

SimpleVectorStore #

Bases: BasePydanticVectorStore

Simple Vector Store.

In this vector store, embeddings are stored within a simple, in-memory dictionary.

Parameters:

Name Type Description Default
simple_vector_store_data_dict Optional[dict]

data dict containing the embeddings and doc_ids. See SimpleVectorStoreData for more details.

required
stores_text bool
False
data SimpleVectorStoreData
SimpleVectorStoreData(embedding_dict={}, text_id_to_ref_doc_id={}, metadata_dict={})
Source code in llama-index-core/llama_index/core/vector_stores/simple.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
class SimpleVectorStore(BasePydanticVectorStore):
    """Simple Vector Store.

    In this vector store, embeddings are stored within a simple, in-memory dictionary.

    Args:
        simple_vector_store_data_dict (Optional[dict]): data dict
            containing the embeddings and doc_ids. See SimpleVectorStoreData
            for more details.
    """

    stores_text: bool = False

    data: SimpleVectorStoreData = Field(default_factory=SimpleVectorStoreData)
    _fs: fsspec.AbstractFileSystem = PrivateAttr()

    def __init__(
        self,
        data: Optional[SimpleVectorStoreData] = None,
        fs: Optional[fsspec.AbstractFileSystem] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        super().__init__(data=data or SimpleVectorStoreData())  # type: ignore[call-arg]
        self._fs = fs or fsspec.filesystem("file")

    @classmethod
    def from_persist_dir(
        cls,
        persist_dir: str = DEFAULT_PERSIST_DIR,
        namespace: str = DEFAULT_VECTOR_STORE,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> "SimpleVectorStore":
        """Load from persist dir."""
        persist_fname = f"{namespace}{NAMESPACE_SEP}{DEFAULT_PERSIST_FNAME}"

        if fs is not None:
            persist_path = concat_dirs(persist_dir, persist_fname)
        else:
            persist_path = os.path.join(persist_dir, persist_fname)
        return cls.from_persist_path(persist_path, fs=fs)

    @classmethod
    def from_namespaced_persist_dir(
        cls,
        persist_dir: str = DEFAULT_PERSIST_DIR,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> Dict[str, BasePydanticVectorStore]:
        """Load from namespaced persist dir."""
        listing_fn = os.listdir if fs is None else fs.listdir

        vector_stores: Dict[str, BasePydanticVectorStore] = {}

        try:
            for fname in listing_fn(persist_dir):
                if fname.endswith(DEFAULT_PERSIST_FNAME):
                    namespace = fname.split(NAMESPACE_SEP)[0]

                    # handle backwards compatibility with stores that were persisted
                    if namespace == DEFAULT_PERSIST_FNAME:
                        vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                            persist_dir=persist_dir, fs=fs
                        )
                    else:
                        vector_stores[namespace] = cls.from_persist_dir(
                            persist_dir=persist_dir, namespace=namespace, fs=fs
                        )
        except Exception:
            # failed to listdir, so assume there is only one store
            try:
                vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                    persist_dir=persist_dir, fs=fs, namespace=DEFAULT_VECTOR_STORE
                )
            except Exception:
                # no namespace backwards compat
                vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                    persist_dir=persist_dir, fs=fs
                )

        return vector_stores

    @classmethod
    def class_name(cls) -> str:
        """Class name."""
        return "SimpleVectorStore"

    @property
    def client(self) -> None:
        """Get client."""
        return

    @property
    def _data(self) -> SimpleVectorStoreData:
        """Backwards compatibility."""
        return self.data

    def get(self, text_id: str) -> List[float]:
        """Get embedding."""
        return self.data.embedding_dict[text_id]

    def get_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> List[BaseNode]:
        """Get nodes."""
        raise NotImplementedError("SimpleVectorStore does not store nodes directly.")

    def add(
        self,
        nodes: Sequence[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """Add nodes to index."""
        for node in nodes:
            self.data.embedding_dict[node.node_id] = node.get_embedding()
            self.data.text_id_to_ref_doc_id[node.node_id] = node.ref_doc_id or "None"

            metadata = node_to_metadata_dict(
                node, remove_text=True, flat_metadata=False
            )
            metadata.pop("_node_content", None)
            self.data.metadata_dict[node.node_id] = metadata
        return [node.node_id for node in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        text_ids_to_delete = set()
        for text_id, ref_doc_id_ in self.data.text_id_to_ref_doc_id.items():
            if ref_doc_id == ref_doc_id_:
                text_ids_to_delete.add(text_id)

        for text_id in text_ids_to_delete:
            del self.data.embedding_dict[text_id]
            del self.data.text_id_to_ref_doc_id[text_id]
            # Handle metadata_dict not being present in stores that were persisted
            # without metadata, or, not being present for nodes stored
            # prior to metadata functionality.
            if self.data.metadata_dict is not None:
                self.data.metadata_dict.pop(text_id, None)

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        filter_fn = _build_metadata_filter_fn(
            lambda node_id: self.data.metadata_dict[node_id], filters
        )

        if node_ids is not None:
            node_id_set = set(node_ids)

            def node_filter_fn(node_id: str) -> bool:
                return node_id in node_id_set and filter_fn(node_id)

        else:

            def node_filter_fn(node_id: str) -> bool:
                return filter_fn(node_id)

        for node_id in list(self.data.embedding_dict.keys()):
            if node_filter_fn(node_id):
                del self.data.embedding_dict[node_id]
                del self.data.text_id_to_ref_doc_id[node_id]
                self.data.metadata_dict.pop(node_id, None)

    def clear(self) -> None:
        """Clear the store."""
        self.data = SimpleVectorStoreData()

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """Get nodes for response."""
        # Prevent metadata filtering on stores that were persisted without metadata.
        if (
            query.filters is not None
            and self.data.embedding_dict
            and not self.data.metadata_dict
        ):
            raise ValueError(
                "Cannot filter stores that were persisted without metadata. "
                "Please rebuild the store with metadata to enable filtering."
            )
        # Prefilter nodes based on the query filter and node ID restrictions.
        query_filter_fn = _build_metadata_filter_fn(
            lambda node_id: self.data.metadata_dict[node_id], query.filters
        )

        if query.node_ids is not None:
            available_ids = set(query.node_ids)

            def node_filter_fn(node_id: str) -> bool:
                return node_id in available_ids

        else:

            def node_filter_fn(node_id: str) -> bool:
                return True

        node_ids = []
        embeddings = []
        # TODO: consolidate with get_query_text_embedding_similarities
        for node_id, embedding in self.data.embedding_dict.items():
            if node_filter_fn(node_id) and query_filter_fn(node_id):
                node_ids.append(node_id)
                embeddings.append(embedding)

        query_embedding = cast(List[float], query.query_embedding)

        if query.mode in LEARNER_MODES:
            top_similarities, top_ids = get_top_k_embeddings_learner(
                query_embedding,
                embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
            )
        elif query.mode == MMR_MODE:
            mmr_threshold = kwargs.get("mmr_threshold", None)
            top_similarities, top_ids = get_top_k_mmr_embeddings(
                query_embedding,
                embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
                mmr_threshold=mmr_threshold,
            )
        elif query.mode == VectorStoreQueryMode.DEFAULT:
            top_similarities, top_ids = get_top_k_embeddings(
                query_embedding,
                embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
            )
        else:
            raise ValueError(f"Invalid query mode: {query.mode}")

        return VectorStoreQueryResult(similarities=top_similarities, ids=top_ids)

    def persist(
        self,
        persist_path: str = os.path.join(DEFAULT_PERSIST_DIR, DEFAULT_PERSIST_FNAME),
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> None:
        """Persist the SimpleVectorStore to a directory."""
        fs = fs or self._fs
        dirpath = os.path.dirname(persist_path)
        if not fs.exists(dirpath):
            fs.makedirs(dirpath)

        with fs.open(persist_path, "w") as f:
            json.dump(self.data.to_dict(), f)

    @classmethod
    def from_persist_path(
        cls, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None
    ) -> "SimpleVectorStore":
        """Create a SimpleKVStore from a persist directory."""
        fs = fs or fsspec.filesystem("file")
        if not fs.exists(persist_path):
            raise ValueError(
                f"No existing {__name__} found at {persist_path}, skipping load."
            )

        logger.debug(f"Loading {__name__} from {persist_path}.")
        with fs.open(persist_path, "rb") as f:
            data_dict = json.load(f)
            data = SimpleVectorStoreData.from_dict(data_dict)
        return cls(data)

    @classmethod
    def from_dict(cls, data: Dict[str, Any], **kwargs: Any) -> "SimpleVectorStore":
        save_data = SimpleVectorStoreData.from_dict(data)
        return cls(save_data)

    def to_dict(self, **kwargs: Any) -> Dict[str, Any]:
        return self.data.to_dict()

client property #

client: None

Get client.

from_persist_dir classmethod #

from_persist_dir(persist_dir: str = DEFAULT_PERSIST_DIR, namespace: str = DEFAULT_VECTOR_STORE, fs: Optional[AbstractFileSystem] = None) -> SimpleVectorStore

Load from persist dir.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
@classmethod
def from_persist_dir(
    cls,
    persist_dir: str = DEFAULT_PERSIST_DIR,
    namespace: str = DEFAULT_VECTOR_STORE,
    fs: Optional[fsspec.AbstractFileSystem] = None,
) -> "SimpleVectorStore":
    """Load from persist dir."""
    persist_fname = f"{namespace}{NAMESPACE_SEP}{DEFAULT_PERSIST_FNAME}"

    if fs is not None:
        persist_path = concat_dirs(persist_dir, persist_fname)
    else:
        persist_path = os.path.join(persist_dir, persist_fname)
    return cls.from_persist_path(persist_path, fs=fs)

from_namespaced_persist_dir classmethod #

from_namespaced_persist_dir(persist_dir: str = DEFAULT_PERSIST_DIR, fs: Optional[AbstractFileSystem] = None) -> Dict[str, BasePydanticVectorStore]

Load from namespaced persist dir.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
@classmethod
def from_namespaced_persist_dir(
    cls,
    persist_dir: str = DEFAULT_PERSIST_DIR,
    fs: Optional[fsspec.AbstractFileSystem] = None,
) -> Dict[str, BasePydanticVectorStore]:
    """Load from namespaced persist dir."""
    listing_fn = os.listdir if fs is None else fs.listdir

    vector_stores: Dict[str, BasePydanticVectorStore] = {}

    try:
        for fname in listing_fn(persist_dir):
            if fname.endswith(DEFAULT_PERSIST_FNAME):
                namespace = fname.split(NAMESPACE_SEP)[0]

                # handle backwards compatibility with stores that were persisted
                if namespace == DEFAULT_PERSIST_FNAME:
                    vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                        persist_dir=persist_dir, fs=fs
                    )
                else:
                    vector_stores[namespace] = cls.from_persist_dir(
                        persist_dir=persist_dir, namespace=namespace, fs=fs
                    )
    except Exception:
        # failed to listdir, so assume there is only one store
        try:
            vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                persist_dir=persist_dir, fs=fs, namespace=DEFAULT_VECTOR_STORE
            )
        except Exception:
            # no namespace backwards compat
            vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                persist_dir=persist_dir, fs=fs
            )

    return vector_stores

class_name classmethod #

class_name() -> str

Class name.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
220
221
222
223
@classmethod
def class_name(cls) -> str:
    """Class name."""
    return "SimpleVectorStore"

get #

get(text_id: str) -> List[float]

Get embedding.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
235
236
237
def get(self, text_id: str) -> List[float]:
    """Get embedding."""
    return self.data.embedding_dict[text_id]

get_nodes #

get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None) -> List[BaseNode]

Get nodes.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
239
240
241
242
243
244
245
def get_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
) -> List[BaseNode]:
    """Get nodes."""
    raise NotImplementedError("SimpleVectorStore does not store nodes directly.")

add #

add(nodes: Sequence[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def add(
    self,
    nodes: Sequence[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """Add nodes to index."""
    for node in nodes:
        self.data.embedding_dict[node.node_id] = node.get_embedding()
        self.data.text_id_to_ref_doc_id[node.node_id] = node.ref_doc_id or "None"

        metadata = node_to_metadata_dict(
            node, remove_text=True, flat_metadata=False
        )
        metadata.pop("_node_content", None)
        self.data.metadata_dict[node.node_id] = metadata
    return [node.node_id for node in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-core/llama_index/core/vector_stores/simple.py
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    text_ids_to_delete = set()
    for text_id, ref_doc_id_ in self.data.text_id_to_ref_doc_id.items():
        if ref_doc_id == ref_doc_id_:
            text_ids_to_delete.add(text_id)

    for text_id in text_ids_to_delete:
        del self.data.embedding_dict[text_id]
        del self.data.text_id_to_ref_doc_id[text_id]
        # Handle metadata_dict not being present in stores that were persisted
        # without metadata, or, not being present for nodes stored
        # prior to metadata functionality.
        if self.data.metadata_dict is not None:
            self.data.metadata_dict.pop(text_id, None)

clear #

clear() -> None

Clear the store.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
313
314
315
def clear(self) -> None:
    """Clear the store."""
    self.data = SimpleVectorStoreData()

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Get nodes for response.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def query(
    self,
    query: VectorStoreQuery,
    **kwargs: Any,
) -> VectorStoreQueryResult:
    """Get nodes for response."""
    # Prevent metadata filtering on stores that were persisted without metadata.
    if (
        query.filters is not None
        and self.data.embedding_dict
        and not self.data.metadata_dict
    ):
        raise ValueError(
            "Cannot filter stores that were persisted without metadata. "
            "Please rebuild the store with metadata to enable filtering."
        )
    # Prefilter nodes based on the query filter and node ID restrictions.
    query_filter_fn = _build_metadata_filter_fn(
        lambda node_id: self.data.metadata_dict[node_id], query.filters
    )

    if query.node_ids is not None:
        available_ids = set(query.node_ids)

        def node_filter_fn(node_id: str) -> bool:
            return node_id in available_ids

    else:

        def node_filter_fn(node_id: str) -> bool:
            return True

    node_ids = []
    embeddings = []
    # TODO: consolidate with get_query_text_embedding_similarities
    for node_id, embedding in self.data.embedding_dict.items():
        if node_filter_fn(node_id) and query_filter_fn(node_id):
            node_ids.append(node_id)
            embeddings.append(embedding)

    query_embedding = cast(List[float], query.query_embedding)

    if query.mode in LEARNER_MODES:
        top_similarities, top_ids = get_top_k_embeddings_learner(
            query_embedding,
            embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
        )
    elif query.mode == MMR_MODE:
        mmr_threshold = kwargs.get("mmr_threshold", None)
        top_similarities, top_ids = get_top_k_mmr_embeddings(
            query_embedding,
            embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
            mmr_threshold=mmr_threshold,
        )
    elif query.mode == VectorStoreQueryMode.DEFAULT:
        top_similarities, top_ids = get_top_k_embeddings(
            query_embedding,
            embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
        )
    else:
        raise ValueError(f"Invalid query mode: {query.mode}")

    return VectorStoreQueryResult(similarities=top_similarities, ids=top_ids)

persist #

persist(persist_path: str = join(DEFAULT_PERSIST_DIR, DEFAULT_PERSIST_FNAME), fs: Optional[AbstractFileSystem] = None) -> None

Persist the SimpleVectorStore to a directory.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
387
388
389
390
391
392
393
394
395
396
397
398
399
def persist(
    self,
    persist_path: str = os.path.join(DEFAULT_PERSIST_DIR, DEFAULT_PERSIST_FNAME),
    fs: Optional[fsspec.AbstractFileSystem] = None,
) -> None:
    """Persist the SimpleVectorStore to a directory."""
    fs = fs or self._fs
    dirpath = os.path.dirname(persist_path)
    if not fs.exists(dirpath):
        fs.makedirs(dirpath)

    with fs.open(persist_path, "w") as f:
        json.dump(self.data.to_dict(), f)

from_persist_path classmethod #

from_persist_path(persist_path: str, fs: Optional[AbstractFileSystem] = None) -> SimpleVectorStore

Create a SimpleKVStore from a persist directory.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
@classmethod
def from_persist_path(
    cls, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None
) -> "SimpleVectorStore":
    """Create a SimpleKVStore from a persist directory."""
    fs = fs or fsspec.filesystem("file")
    if not fs.exists(persist_path):
        raise ValueError(
            f"No existing {__name__} found at {persist_path}, skipping load."
        )

    logger.debug(f"Loading {__name__} from {persist_path}.")
    with fs.open(persist_path, "rb") as f:
        data_dict = json.load(f)
        data = SimpleVectorStoreData.from_dict(data_dict)
    return cls(data)