Skip to content

Redis

RedisVectorStore #

Bases: BasePydanticVectorStore

RedisVectorStore.

The RedisVectorStore takes a user-defined schema object and a Redis connection client or URL string. The schema is optional, but useful for: - Defining a custom index name, key prefix, and key separator. - Defining additional metadata fields to use as query filters. - Setting custom specifications on fields to improve search quality, e.g which vector index algorithm to use.

Other Notes: - All embeddings and docs are stored in Redis. During query time, the index uses Redis to query for the top k most similar nodes. - Redis & LlamaIndex expect at least 4 required fields for any schema, default or custom, id, doc_id, text, vector.

Parameters:

Name Type Description Default
schema IndexSchema

Redis index schema object.

None
redis_client Redis

Redis client connection.

None
redis_url str

Redis server URL. Defaults to "redis://localhost:6379".

None
overwrite bool

Whether to overwrite the index if it already exists. Defaults to False.

False

Raises:

Type Description
ValueError

If your Redis server does not have search or JSON enabled.

ValueError

If a Redis connection failed to be established.

ValueError

If an invalid schema is provided.

Example

from redisvl.schema import IndexSchema from llama_index.vector_stores.redis import RedisVectorStore

Use default schema#

rds = RedisVectorStore(redis_url="redis://localhost:6379")

Use custom schema from dict#

schema = IndexSchema.from_dict({ "index": {"name": "my-index", "prefix": "docs"}, "fields": [ {"name": "id", "type": "tag"}, {"name": "doc_id", "type": "tag}, {"name": "text", "type": "text"}, {"name": "vector", "type": "vector", "attrs": {"dims": 1536, "algorithm": "flat"}} ] }) vector_store = RedisVectorStore( schema=schema, redis_url="redis://localhost:6379" )

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
class RedisVectorStore(BasePydanticVectorStore):
    """RedisVectorStore.

    The RedisVectorStore takes a user-defined schema object and a Redis connection
    client or URL string. The schema is optional, but useful for:
    - Defining a custom index name, key prefix, and key separator.
    - Defining *additional* metadata fields to use as query filters.
    - Setting custom specifications on fields to improve search quality, e.g
    which vector index algorithm to use.

    Other Notes:
    - All embeddings and docs are stored in Redis. During query time, the index
    uses Redis to query for the top k most similar nodes.
    - Redis & LlamaIndex expect at least 4 *required* fields for any schema, default or custom,
    `id`, `doc_id`, `text`, `vector`.

    Args:
        schema (IndexSchema, optional): Redis index schema object.
        redis_client (Redis, optional): Redis client connection.
        redis_url (str, optional): Redis server URL.
            Defaults to "redis://localhost:6379".
        overwrite (bool, optional): Whether to overwrite the index if it already exists.
            Defaults to False.

    Raises:
        ValueError: If your Redis server does not have search or JSON enabled.
        ValueError: If a Redis connection failed to be established.
        ValueError: If an invalid schema is provided.

    Example:
        from redisvl.schema import IndexSchema
        from llama_index.vector_stores.redis import RedisVectorStore

        # Use default schema
        rds = RedisVectorStore(redis_url="redis://localhost:6379")

        # Use custom schema from dict
        schema = IndexSchema.from_dict({
            "index": {"name": "my-index", "prefix": "docs"},
            "fields": [
                {"name": "id", "type": "tag"},
                {"name": "doc_id", "type": "tag},
                {"name": "text", "type": "text"},
                {"name": "vector", "type": "vector", "attrs": {"dims": 1536, "algorithm": "flat"}}
            ]
        })
        vector_store = RedisVectorStore(
            schema=schema,
            redis_url="redis://localhost:6379"
        )
    """

    stores_text: bool = True
    stores_node: bool = True
    flat_metadata: bool = False

    _index: SearchIndex = PrivateAttr()
    _overwrite: bool = PrivateAttr()
    _return_fields: List[str] = PrivateAttr()

    def __init__(
        self,
        schema: Optional[IndexSchema] = None,
        redis_client: Optional[Redis] = None,
        redis_url: Optional[str] = None,
        overwrite: bool = False,
        return_fields: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        # check for indicators of old schema
        self._flag_old_kwargs(**kwargs)

        # Setup schema
        if not schema:
            logger.info("Using default RedisVectorStore schema.")
            schema = RedisVectorStoreSchema()

        self._validate_schema(schema)
        self._return_fields = return_fields or [
            NODE_ID_FIELD_NAME,
            DOC_ID_FIELD_NAME,
            TEXT_FIELD_NAME,
            NODE_CONTENT_FIELD_NAME,
        ]
        self._index = SearchIndex(schema=schema)
        self._overwrite = overwrite

        # Establish redis connection
        if redis_client:
            self._index.set_client(redis_client)
        elif redis_url:
            self._index.connect(redis_url)
        else:
            raise ValueError(
                "Failed to connect to Redis. Must provide a valid redis client or url"
            )

        # Create index
        self.create_index()

    def _flag_old_kwargs(self, **kwargs):
        old_kwargs = [
            "index_name",
            "index_prefix",
            "prefix_ending",
            "index_args",
            "metadata_fields",
        ]
        for kwarg in old_kwargs:
            if kwarg in kwargs:
                raise ValueError(
                    f"Deprecated kwarg, {kwarg}, found upon initialization. "
                    "RedisVectorStore now requires an IndexSchema object. "
                    "See the documentation for a complete example: https://docs.llamaindex.ai/en/stable/examples/vector_stores/RedisIndexDemo/"
                )

    def _validate_schema(self, schema: IndexSchema) -> str:
        base_schema = RedisVectorStoreSchema()
        for name, field in base_schema.fields.items():
            if (name not in schema.fields) or (
                not schema.fields[name].type == field.type
            ):
                raise ValueError(
                    f"Required field {name} must be present in the index "
                    f"and of type {schema.fields[name].type}"
                )

    @property
    def client(self) -> "Redis":
        """Return the redis client instance."""
        return self._index.client

    @property
    def index_name(self) -> str:
        """Return the name of the index based on the schema."""
        return self._index.name

    @property
    def schema(self) -> IndexSchema:
        """Return the index schema."""
        return self._index.schema

    def set_return_fields(self, return_fields: List[str]) -> None:
        """Update the return fields for the query response."""
        self._return_fields = return_fields

    def index_exists(self) -> bool:
        """Check whether the index exists in Redis.

        Returns:
            bool: True or False.
        """
        return self._index.exists()

    def create_index(self, overwrite: Optional[bool] = None) -> None:
        """Create an index in Redis."""
        if overwrite is None:
            overwrite = self._overwrite
        # Create index honoring overwrite policy
        if overwrite:
            self._index.create(overwrite=True, drop=True)
        else:
            self._index.create()

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """Add nodes to the index.

        Args:
            nodes (List[BaseNode]): List of nodes with embeddings

        Returns:
            List[str]: List of ids of the documents added to the index.

        Raises:
            ValueError: If the index already exists and overwrite is False.
        """
        # Check to see if empty document list was passed
        if len(nodes) == 0:
            return []

        # Now check for the scenario where user is trying to index embeddings that don't align with schema
        embedding_len = len(nodes[0].get_embedding())
        expected_dims = self._index.schema.fields[VECTOR_FIELD_NAME].attrs.dims
        if expected_dims != embedding_len:
            raise ValueError(
                f"Attempting to index embeddings of dim {embedding_len} "
                f"which doesn't match the index schema expectation of {expected_dims}. "
                "Please review the Redis integration example to learn how to customize schema. "
                ""
            )

        data: List[Dict[str, Any]] = []
        for node in nodes:
            embedding = node.get_embedding()
            record = {
                NODE_ID_FIELD_NAME: node.node_id,
                DOC_ID_FIELD_NAME: node.ref_doc_id,
                TEXT_FIELD_NAME: node.get_content(metadata_mode=MetadataMode.NONE),
                VECTOR_FIELD_NAME: array_to_buffer(embedding, dtype="FLOAT32"),
            }
            # parse and append metadata
            additional_metadata = node_to_metadata_dict(
                node, remove_text=True, flat_metadata=self.flat_metadata
            )
            data.append({**record, **additional_metadata})

        # Load nodes to Redis
        keys = self._index.load(data, id_field=NODE_ID_FIELD_NAME, **add_kwargs)
        logger.info(f"Added {len(keys)} documents to index {self._index.name}")
        return [
            key.strip(self._index.prefix + self._index.key_separator) for key in keys
        ]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        # build a filter to target specific docs by doc ID
        doc_filter = Tag(DOC_ID_FIELD_NAME) == ref_doc_id
        total = self._index.query(CountQuery(doc_filter))
        delete_query = FilterQuery(
            return_fields=[NODE_ID_FIELD_NAME],
            filter_expression=doc_filter,
            num_results=total,
        )
        # fetch docs to delete and flush them
        docs_to_delete = self._index.search(delete_query.query, delete_query.params)
        with self._index.client.pipeline(transaction=False) as pipe:
            for doc in docs_to_delete.docs:
                pipe.delete(doc.id)
            res = pipe.execute()

        logger.info(
            f"Deleted {len(docs_to_delete.docs)} documents from index {self._index.name}"
        )

    def delete_index(self) -> None:
        """Delete the index and all documents."""
        logger.info(f"Deleting index {self._index.name}")
        self._index.delete(drop=True)

    @staticmethod
    def _to_redis_filter(field: BaseField, filter: MetadataFilter) -> FilterExpression:
        """
        Translate a standard metadata filter to a Redis specific filter expression.

        Args:
            field (BaseField): The field to be filtered on, must have a type attribute.
            filter (MetadataFilter): The filter to apply, must have operator and value attributes.

        Returns:
            FilterExpression: A Redis-specific filter expression constructed from the input.

        Raises:
            ValueError: If the field type is unsupported or if the operator is not supported for the field type.
        """
        # Check for unsupported field type
        if field.type not in REDIS_LLAMA_FIELD_SPEC:
            raise ValueError(f"Unsupported field type {field.type} for {field.name}")

        field_info = REDIS_LLAMA_FIELD_SPEC[field.type]

        # Check for unsupported operator
        if filter.operator not in field_info["operators"]:
            raise ValueError(
                f"Filter operator {filter.operator} not supported for {field.name} of type {field.type}"
            )

        # Create field instance and apply the operator function
        field_instance = field_info["class"](field.name)
        return field_info["operators"][filter.operator](field_instance, filter.value)

    def _create_redis_filter_expression(
        self, metadata_filters: MetadataFilters
    ) -> FilterExpression:
        """
        Generate a Redis Filter Expression as a combination of metadata filters.

        Args:
            metadata_filters (MetadataFilters): List of metadata filters to use.

        Returns:
            FilterExpression: A Redis filter expression.
        """
        filter_expression = FilterExpression("*")
        if metadata_filters:
            if metadata_filters.filters:
                for filter in metadata_filters.filters:
                    # Handle nested MetadataFilters recursively
                    if isinstance(filter, MetadataFilters):
                        redis_filter = self._create_redis_filter_expression(filter)
                    else:
                        # Index must be created with the metadata field in the index schema
                        field = self._index.schema.fields.get(filter.key)
                        if not field:
                            logger.warning(
                                f"{filter.key} field was not included as part of the index schema, and thus cannot be used as a filter condition."
                            )
                            continue
                        # Extract redis filter
                        redis_filter = self._to_redis_filter(field, filter)

                    # Combine with conditional
                    if metadata_filters.condition == "and":
                        filter_expression = filter_expression & redis_filter
                    else:
                        filter_expression = filter_expression | redis_filter
        return filter_expression

    def _to_redis_query(self, query: VectorStoreQuery) -> VectorQuery:
        """Creates a RedisQuery from a VectorStoreQuery."""
        filter_expression = self._create_redis_filter_expression(query.filters)
        return_fields = self._return_fields.copy()
        return VectorQuery(
            vector=query.query_embedding,
            vector_field_name=VECTOR_FIELD_NAME,
            num_results=query.similarity_top_k,
            filter_expression=filter_expression,
            return_fields=return_fields,
        )

    def _extract_node_and_score(self, doc, redis_query: VectorQuery):
        """Extracts a node and its score from a document."""
        try:
            node = metadata_dict_to_node(
                {NODE_CONTENT_FIELD_NAME: doc[NODE_CONTENT_FIELD_NAME]}
            )
            node.text = doc[TEXT_FIELD_NAME]
        except Exception:
            # Handle legacy metadata format
            node = TextNode(
                text=doc[TEXT_FIELD_NAME],
                id_=doc[NODE_ID_FIELD_NAME],
                embedding=None,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(
                        node_id=doc[DOC_ID_FIELD_NAME]
                    )
                },
            )
        score = 1 - float(doc[redis_query.DISTANCE_ID])
        return node, score

    def _process_query_results(
        self, results, redis_query: VectorQuery
    ) -> VectorStoreQueryResult:
        """Processes query results and returns a VectorStoreQueryResult."""
        ids, nodes, scores = [], [], []
        for doc in results:
            node, score = self._extract_node_and_score(doc, redis_query)
            ids.append(doc[NODE_ID_FIELD_NAME])
            nodes.append(node)
            scores.append(score)
        logger.info(f"Found {len(nodes)} results for query with id {ids}")
        return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """Query the index.

        Args:
            query (VectorStoreQuery): query object

        Returns:
            VectorStoreQueryResult: query result

        Raises:
            ValueError: If query.query_embedding is None.
            redis.exceptions.RedisError: If there is an error querying the index.
            redis.exceptions.TimeoutError: If there is a timeout querying the index.
        """
        if not query.query_embedding:
            raise ValueError("Query embedding is required for querying.")

        redis_query = self._to_redis_query(query)
        logger.info(f"Querying index {self._index.name} with query {redis_query!s}")

        try:
            results = self._index.query(redis_query)
        except RedisTimeoutError as e:
            logger.error(f"Query timed out on {self._index.name}: {e}")
            raise
        except RedisError as e:
            logger.error(f"Error querying {self._index.name}: {e}")
            raise

        return self._process_query_results(results, redis_query)

    def persist(
        self,
        persist_path: Optional[str] = None,
        fs: Optional[fsspec.AbstractFileSystem] = None,
        in_background: bool = True,
    ) -> None:
        """Persist the vector store to disk.

        For Redis, more notes here: https://redis.io/docs/management/persistence/

        Args:
            persist_path (str): Path to persist the vector store to. (doesn't apply)
            in_background (bool, optional): Persist in background. Defaults to True.
            fs (fsspec.AbstractFileSystem, optional): Filesystem to persist to.
                (doesn't apply)

        Raises:
            redis.exceptions.RedisError: If there is an error
                                         persisting the index to disk.
        """
        try:
            if in_background:
                logger.info("Saving index to disk in background")
                self._index.client.bgsave()
            else:
                logger.info("Saving index to disk")
                self._index.client.save()

        except RedisError as e:
            logger.error(f"Error saving index to disk: {e}")
            raise

client property #

client: Redis

Return the redis client instance.

index_name property #

index_name: str

Return the name of the index based on the schema.

schema property #

schema: IndexSchema

Return the index schema.

set_return_fields #

set_return_fields(return_fields: List[str]) -> None

Update the return fields for the query response.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
197
198
199
def set_return_fields(self, return_fields: List[str]) -> None:
    """Update the return fields for the query response."""
    self._return_fields = return_fields

index_exists #

index_exists() -> bool

Check whether the index exists in Redis.

Returns:

Name Type Description
bool bool

True or False.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
201
202
203
204
205
206
207
def index_exists(self) -> bool:
    """Check whether the index exists in Redis.

    Returns:
        bool: True or False.
    """
    return self._index.exists()

create_index #

create_index(overwrite: Optional[bool] = None) -> None

Create an index in Redis.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
209
210
211
212
213
214
215
216
217
def create_index(self, overwrite: Optional[bool] = None) -> None:
    """Create an index in Redis."""
    if overwrite is None:
        overwrite = self._overwrite
    # Create index honoring overwrite policy
    if overwrite:
        self._index.create(overwrite=True, drop=True)
    else:
        self._index.create()

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to the index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes with embeddings

required

Returns:

Type Description
List[str]

List[str]: List of ids of the documents added to the index.

Raises:

Type Description
ValueError

If the index already exists and overwrite is False.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """Add nodes to the index.

    Args:
        nodes (List[BaseNode]): List of nodes with embeddings

    Returns:
        List[str]: List of ids of the documents added to the index.

    Raises:
        ValueError: If the index already exists and overwrite is False.
    """
    # Check to see if empty document list was passed
    if len(nodes) == 0:
        return []

    # Now check for the scenario where user is trying to index embeddings that don't align with schema
    embedding_len = len(nodes[0].get_embedding())
    expected_dims = self._index.schema.fields[VECTOR_FIELD_NAME].attrs.dims
    if expected_dims != embedding_len:
        raise ValueError(
            f"Attempting to index embeddings of dim {embedding_len} "
            f"which doesn't match the index schema expectation of {expected_dims}. "
            "Please review the Redis integration example to learn how to customize schema. "
            ""
        )

    data: List[Dict[str, Any]] = []
    for node in nodes:
        embedding = node.get_embedding()
        record = {
            NODE_ID_FIELD_NAME: node.node_id,
            DOC_ID_FIELD_NAME: node.ref_doc_id,
            TEXT_FIELD_NAME: node.get_content(metadata_mode=MetadataMode.NONE),
            VECTOR_FIELD_NAME: array_to_buffer(embedding, dtype="FLOAT32"),
        }
        # parse and append metadata
        additional_metadata = node_to_metadata_dict(
            node, remove_text=True, flat_metadata=self.flat_metadata
        )
        data.append({**record, **additional_metadata})

    # Load nodes to Redis
    keys = self._index.load(data, id_field=NODE_ID_FIELD_NAME, **add_kwargs)
    logger.info(f"Added {len(keys)} documents to index {self._index.name}")
    return [
        key.strip(self._index.prefix + self._index.key_separator) for key in keys
    ]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    # build a filter to target specific docs by doc ID
    doc_filter = Tag(DOC_ID_FIELD_NAME) == ref_doc_id
    total = self._index.query(CountQuery(doc_filter))
    delete_query = FilterQuery(
        return_fields=[NODE_ID_FIELD_NAME],
        filter_expression=doc_filter,
        num_results=total,
    )
    # fetch docs to delete and flush them
    docs_to_delete = self._index.search(delete_query.query, delete_query.params)
    with self._index.client.pipeline(transaction=False) as pipe:
        for doc in docs_to_delete.docs:
            pipe.delete(doc.id)
        res = pipe.execute()

    logger.info(
        f"Deleted {len(docs_to_delete.docs)} documents from index {self._index.name}"
    )

delete_index #

delete_index() -> None

Delete the index and all documents.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
295
296
297
298
def delete_index(self) -> None:
    """Delete the index and all documents."""
    logger.info(f"Deleting index {self._index.name}")
    self._index.delete(drop=True)

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query the index.

Parameters:

Name Type Description Default
query VectorStoreQuery

query object

required

Returns:

Name Type Description
VectorStoreQueryResult VectorStoreQueryResult

query result

Raises:

Type Description
ValueError

If query.query_embedding is None.

RedisError

If there is an error querying the index.

TimeoutError

If there is a timeout querying the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """Query the index.

    Args:
        query (VectorStoreQuery): query object

    Returns:
        VectorStoreQueryResult: query result

    Raises:
        ValueError: If query.query_embedding is None.
        redis.exceptions.RedisError: If there is an error querying the index.
        redis.exceptions.TimeoutError: If there is a timeout querying the index.
    """
    if not query.query_embedding:
        raise ValueError("Query embedding is required for querying.")

    redis_query = self._to_redis_query(query)
    logger.info(f"Querying index {self._index.name} with query {redis_query!s}")

    try:
        results = self._index.query(redis_query)
    except RedisTimeoutError as e:
        logger.error(f"Query timed out on {self._index.name}: {e}")
        raise
    except RedisError as e:
        logger.error(f"Error querying {self._index.name}: {e}")
        raise

    return self._process_query_results(results, redis_query)

persist #

persist(persist_path: Optional[str] = None, fs: Optional[AbstractFileSystem] = None, in_background: bool = True) -> None

Persist the vector store to disk.

For Redis, more notes here: https://redis.io/docs/management/persistence/

Parameters:

Name Type Description Default
persist_path str

Path to persist the vector store to. (doesn't apply)

None
in_background bool

Persist in background. Defaults to True.

True
fs AbstractFileSystem

Filesystem to persist to. (doesn't apply)

None

Raises:

Type Description
RedisError

If there is an error persisting the index to disk.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-redis/llama_index/vector_stores/redis/base.py
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def persist(
    self,
    persist_path: Optional[str] = None,
    fs: Optional[fsspec.AbstractFileSystem] = None,
    in_background: bool = True,
) -> None:
    """Persist the vector store to disk.

    For Redis, more notes here: https://redis.io/docs/management/persistence/

    Args:
        persist_path (str): Path to persist the vector store to. (doesn't apply)
        in_background (bool, optional): Persist in background. Defaults to True.
        fs (fsspec.AbstractFileSystem, optional): Filesystem to persist to.
            (doesn't apply)

    Raises:
        redis.exceptions.RedisError: If there is an error
                                     persisting the index to disk.
    """
    try:
        if in_background:
            logger.info("Saving index to disk in background")
            self._index.client.bgsave()
        else:
            logger.info("Saving index to disk")
            self._index.client.save()

    except RedisError as e:
        logger.error(f"Error saving index to disk: {e}")
        raise