Mongodb
MongoDBAtlasVectorSearch #
Bases: BasePydanticVectorStore
MongoDB Atlas Vector Store.
To use, you should have both:
- the pymongo
python package installed
- a connection string associated with a MongoDB Atlas Cluster
that has an Atlas Vector Search index
To get started head over to the Atlas quick start.
Once your store is created, be sure to enable indexing in the Atlas GUI.
Please refer to the documentation to get more details on how to define an Atlas Vector Search index. You can name the index {ATLAS_VECTOR_SEARCH_INDEX_NAME} and create the index on the namespace {DB_NAME}.{COLLECTION_NAME}.
Finally, write the following definition in the JSON editor on MongoDB Atlas:
{
"name": "vector_index",
"type": "vectorSearch",
"fields":[
{
"type": "vector",
"path": "embedding",
"numDimensions": 1536,
"similarity": "cosine"
}
]
}
Optionally, you can use the experimental convenience methods on this class to manage the vector search index and the full text index.
Examples:
pip install llama-index-vector-stores-mongodb
import pymongo
from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
# Ensure you have the MongoDB URI with appropriate credentials
mongo_uri = "mongodb+srv://<username>:<password>@<host>?retryWrites=true&w=majority"
mongodb_client = pymongo.MongoClient(mongo_uri)
# Create an instance of MongoDBAtlasVectorSearch
vector_store = MongoDBAtlasVectorSearch(mongodb_client)
# Create a vector search index programmatically
vector_store.create_vector_search_index(path="embedding", dimensions=1536, similarity="cosine")
# Create a text search index programmatically
vector_store.create_fulltext_search_index("foo)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes
|
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Returns:
Type | Description |
---|---|
List[str]
|
A List of ids for successfully added nodes. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id
|
str
|
The doc_id of the document to delete. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
233 234 235 236 237 238 239 240 241 242 243 244 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
The type of search to be performed is based on the VectorStoreQuery.mode. Choose from DEFAULT (vector), HYBRID (hybrid), or TEXT_SEARCH (full-text). When the mode is one of HYBRID or TEXT_SEARCH, VectorStoreQuery.query_str is used for the full-text search. See MongoDB Atlas documentation for full details on these.
For details on VectorStoreQueryMode.DEFAULT == 'default', which does vector search, see: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/
For details on VectorStoreQueryMode.TEXT_SEARCH == "text_search", which performs full-text search, see: https://www.mongodb.com/docs/atlas/atlas-search/aggregation-stages/search/#mongodb-pipeline-pipe.-search
For details on VectorStoreQueryMode.HYBRID == "hybrid", which combines the two with Reciprocal Rank Fusion, see the following. https://www.mongodb.com/docs/atlas/atlas-vector-search/tutorials/reciprocal-rank-fusion/
In the scoring algorithm used, Reciprocal Rank Fusion, scores := \frac{1}{rank + penalty} with rank in [1,2,..,n]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
VectorStoreQuery
|
a VectorStoreQuery object. |
required |
Returns:
Type | Description |
---|---|
VectorStoreQueryResult
|
A VectorStoreQueryResult containing the results of the query. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
|
create_vector_search_index #
create_vector_search_index(dimensions: int, path: str, similarity: str, filters: Optional[List[str]] = None, *, wait_until_complete: Optional[float] = None, **kwargs: Any) -> None
Experimental Utility function to create the vector search index for this store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dimensions
|
int
|
Number of dimensions in embedding |
required |
path
|
str
|
field with vector embedding |
required |
similarity
|
str
|
The similarity score used for the index |
required |
filters
|
List[str]
|
Fields/paths to index to allow filtering in $vectorSearch |
None
|
wait_until_complete
|
Optional[float]
|
If provided, number of seconds to wait until search index is ready. |
None
|
kwargs
|
Any
|
Keyword arguments supplying any additional options to SearchIndexModel. |
{}
|
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
drop_vector_search_index #
drop_vector_search_index(*, wait_until_complete: Optional[float] = None) -> None
Drop the created vector search index for this store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
wait_until_complete
|
Optional[float]
|
If provided, number of seconds to wait until search index is ready. |
None
|
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
update_vector_search_index #
update_vector_search_index(dimensions: int, path: str, similarity: str, filters: Optional[List[str]] = None, *, wait_until_complete: Optional[float] = None, **kwargs: Any) -> None
Update the vector search index for this store.
Replace the existing index definition with the provided definition.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dimensions
|
int
|
Number of dimensions in embedding |
required |
path
|
str
|
field with vector embedding |
required |
similarity
|
str
|
The similarity score used for the index. |
required |
filters
|
List[str]
|
Fields/paths to index to allow filtering in $vectorSearch |
None
|
wait_until_complete
|
Optional[float]
|
If provided, number of seconds to wait until search index is ready. |
None
|
kwargs
|
Any
|
Keyword arguments supplying any additional options to SearchIndexModel. |
{}
|
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
create_fulltext_search_index #
create_fulltext_search_index(field: str, field_type: str = 'string', *, wait_until_complete: Optional[float] = None, **kwargs: Any) -> None
Experimental Utility function to create the Atlas Search index for this store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
field
|
str
|
Field to index |
required |
wait_until_complete
|
Optional[float]
|
If provided, number of seconds to wait until search index is ready |
None
|
kwargs
|
Any
|
Keyword arguments supplying any additional options to SearchIndexModel. |
{}
|
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
|