Skip to content

Deeplake

DeepLakeVectorStore #

Bases: BasePydanticVectorStore

The DeepLake Vector Store.

In this vector store we store the text, its embedding and a few pieces of its metadata in a deeplake dataset. This implementation allows the use of an already existing deeplake dataset if it is one that was created this vector store. It also supports creating a new one if the dataset doesn't exist or if overwrite is set to True.

Examples:

pip install llama-index-vector-stores-deeplake

from llama_index.vector_stores.deeplake import DeepLakeVectorStore

# Create an instance of DeepLakeVectorStore
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
class DeepLakeVectorStore(BasePydanticVectorStore):
    """The DeepLake Vector Store.

    In this vector store we store the text, its embedding and
    a few pieces of its metadata in a deeplake dataset. This implementation
    allows the use of an already existing deeplake dataset if it is one that was created
    this vector store. It also supports creating a new one if the dataset doesn't
    exist or if `overwrite` is set to True.

    Examples:
        `pip install llama-index-vector-stores-deeplake`

        ```python
        from llama_index.vector_stores.deeplake import DeepLakeVectorStore

        # Create an instance of DeepLakeVectorStore
        vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
        ```
    """

    stores_text: bool = True
    flat_metadata: bool = True

    ingestion_batch_size: int
    num_workers: int
    token: Optional[str]
    read_only: Optional[bool]
    dataset_path: str
    vectorstore: Any = "VectorStore"

    _embedding_dimension: int = PrivateAttr()
    _ttl_seconds: Optional[int] = PrivateAttr()
    _deeplake_db: Any = PrivateAttr()
    _deeplake_db_collection: Any = PrivateAttr()
    _id_tensor_name: str = PrivateAttr()

    def __init__(
        self,
        dataset_path: str = "llama_index",
        token: Optional[str] = None,
        read_only: Optional[bool] = False,
        ingestion_batch_size: int = 1024,
        ingestion_num_workers: int = 4,
        overwrite: bool = False,
        exec_option: Optional[str] = None,
        verbose: bool = True,
        **kwargs: Any,
    ) -> None:
        """
        Args:
            dataset_path (str): The full path for storing to the Deep Lake Vector Store. It can be:
                - a Deep Lake cloud path of the form ``hub://org_id/dataset_name``. Requires registration with Deep Lake.
                - an s3 path of the form ``s3://bucketname/path/to/dataset``. Credentials are required in either the environment or passed to the creds argument.
                - a local file system path of the form ``./path/to/dataset`` or ``~/path/to/dataset`` or ``path/to/dataset``.
                - a memory path of the form ``mem://path/to/dataset`` which doesn't save the dataset but keeps it in memory instead. Should be used only for testing as it does not persist.
                Defaults to "llama_index".
            overwrite (bool, optional): If set to True this overwrites the Vector Store if it already exists. Defaults to False.
            token (str, optional): Activeloop token, used for fetching user credentials. This is Optional, tokens are normally autogenerated. Defaults to None.
            read_only (bool, optional): Opens dataset in read-only mode if True. Defaults to False.
            ingestion_batch_size (int): During data ingestion, data is divided
                into batches. Batch size is the size of each batch. Defaults to 1024.
            ingestion_num_workers (int): number of workers to use during data ingestion.
                Defaults to 4.
            exec_option (str): Default method for search execution. It could be either ``"auto"``, ``"python"``, ``"compute_engine"`` or ``"tensor_db"``. Defaults to ``"auto"``. If None, it's set to "auto".
                - ``auto``- Selects the best execution method based on the storage location of the Vector Store. It is the default option.
                - ``python`` - Pure-python implementation that runs on the client and can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged because it can lead to memory issues.
                - ``compute_engine`` - Performant C++ implementation of the Deep Lake Compute Engine that runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets.
                - ``tensor_db`` - Performant and fully-hosted Managed Tensor Database that is responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. Store datasets in this database by specifying runtime = {"tensor_db": True} during dataset creation.

        Raises:
            ImportError: Unable to import `deeplake`.
        """
        super().__init__(
            dataset_path=dataset_path,
            token=token,
            read_only=read_only,
            ingestion_batch_size=ingestion_batch_size,
            num_workers=ingestion_num_workers,
        )

        self.vectorstore = VectorStore(
            path=dataset_path,
            ingestion_batch_size=ingestion_batch_size,
            num_workers=ingestion_num_workers,
            token=token,
            read_only=read_only,
            exec_option=exec_option,
            overwrite=overwrite,
            verbose=verbose,
            **kwargs,
        )
        try:
            self._id_tensor_name = (
                "ids" if "ids" in self.vectorstore.tensors() else "id"
            )
        except AttributeError:
            self._id_tensor_name = "id"

    @property
    def client(self) -> Any:
        """Get client.

        Returns:
            Any: DeepLake vectorstore dataset.
        """
        return self.vectorstore.dataset

    def summary(self):
        self.vectorstore.summary()

    def get_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> List[BaseNode]:
        """Get nodes from vector store."""
        if node_ids:
            data = self.vectorstore.search(filter={"id": node_ids})
        else:
            data = self.vectorstore.search(filter={})

        nodes = []
        for metadata in data["metadata"]:
            nodes.append(metadata_dict_to_node(metadata))

        def filter_func(doc):
            if not filters:
                return True

            found_one = False
            for f in filters.filters:
                value = doc.metadata[f.key]
                if f.operator == FilterOperator.EQ:
                    result = value == f.value
                elif f.operator == FilterOperator.GT:
                    result = value > f.value
                elif f.operator == FilterOperator.GTE:
                    result = value >= f.value
                elif f.operator == FilterOperator.LT:
                    result = value < f.value
                elif f.operator == FilterOperator.LTE:
                    result = value <= f.value
                elif f.operator == FilterOperator.NE:
                    result = value != f.value
                elif f.operator == FilterOperator.IN:
                    result = value in f.value
                elif f.operator == FilterOperator.NOT_IN:
                    result = value not in f.value
                elif f.operator == FilterOperator.TEXT_MATCH:
                    result = f.value in value
                else:
                    raise ValueError(f"Unsupported filter operator: {f.operator}")

                if result:
                    found_one = True
                    if filters.condition == FilterCondition.OR:
                        return True
                else:
                    if filters.condition == FilterCondition.AND:
                        return False

            return found_one

        if filters:
            return [x for x in nodes if filter_func(x)]
        else:
            return nodes

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        if filters:
            self.vectorstore.delete(
                ids=[
                    x.node_id
                    for x in self.get_nodes(node_ids=node_ids, filters=filters)
                ]
            )
        else:
            self.vectorstore.delete(ids=node_ids)

    def clear(self) -> None:
        """Clear the vector store."""
        if DEEPLAKE_V4:
            for i in range(len(self.vectorstore.ds) - 1, -1, -1):
                self.vectorstore.ds.delete(i)
        else:
            self.vectorstore.delete(filter=lambda x: True)

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """Add the embeddings and their nodes into DeepLake.

        Args:
            nodes (List[BaseNode]): List of nodes with embeddings
                to insert.

        Returns:
            List[str]: List of ids inserted.
        """
        embedding = []
        metadata = []
        id_ = []
        text = []

        for node in nodes:
            embedding.append(node.get_embedding())
            metadata.append(
                node_to_metadata_dict(
                    node, remove_text=False, flat_metadata=self.flat_metadata
                )
            )
            id_.append(node.node_id)
            text.append(node.get_content(metadata_mode=MetadataMode.NONE))

        kwargs = {self._id_tensor_name: id_}

        return self.vectorstore.add(
            embedding_data=embedding,
            metadata=metadata,
            embedding_tensor="embedding",
            text=text,
            return_ids=True,
            **kwargs,
        )

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        self.vectorstore.delete(filter={"metadata": {"doc_id": ref_doc_id}})

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): VectorStoreQuery class input, it has
                the following attributes:
                1. query_embedding (List[float]): query embedding
                2. similarity_top_k (int): top k most similar nodes
            deep_memory (bool): Whether to use deep memory for query execution.

        Returns:
            VectorStoreQueryResult
        """
        query_embedding = cast(List[float], query.query_embedding)
        exec_option = kwargs.get("exec_option")
        deep_memory = kwargs.get("deep_memory")
        data = self.vectorstore.search(
            embedding=query_embedding,
            exec_option=exec_option,
            k=query.similarity_top_k,
            distance_metric="cosine_similarity",
            filter=query.filters,
            return_tensors=None,
            deep_memory=deep_memory,
        )

        similarities = data["score"]
        ids = data[self._id_tensor_name]
        metadatas = data["metadata"]
        nodes = []
        for metadata in metadatas:
            if "_node_type" not in metadata:
                metadata["_node_type"] = TextNode.class_name()
            nodes.append(metadata_dict_to_node(metadata))

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

client property #

client: Any

Get client.

Returns:

Name Type Description
Any Any

DeepLake vectorstore dataset.

get_nodes #

get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None) -> List[BaseNode]

Get nodes from vector store.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def get_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
) -> List[BaseNode]:
    """Get nodes from vector store."""
    if node_ids:
        data = self.vectorstore.search(filter={"id": node_ids})
    else:
        data = self.vectorstore.search(filter={})

    nodes = []
    for metadata in data["metadata"]:
        nodes.append(metadata_dict_to_node(metadata))

    def filter_func(doc):
        if not filters:
            return True

        found_one = False
        for f in filters.filters:
            value = doc.metadata[f.key]
            if f.operator == FilterOperator.EQ:
                result = value == f.value
            elif f.operator == FilterOperator.GT:
                result = value > f.value
            elif f.operator == FilterOperator.GTE:
                result = value >= f.value
            elif f.operator == FilterOperator.LT:
                result = value < f.value
            elif f.operator == FilterOperator.LTE:
                result = value <= f.value
            elif f.operator == FilterOperator.NE:
                result = value != f.value
            elif f.operator == FilterOperator.IN:
                result = value in f.value
            elif f.operator == FilterOperator.NOT_IN:
                result = value not in f.value
            elif f.operator == FilterOperator.TEXT_MATCH:
                result = f.value in value
            else:
                raise ValueError(f"Unsupported filter operator: {f.operator}")

            if result:
                found_one = True
                if filters.condition == FilterCondition.OR:
                    return True
            else:
                if filters.condition == FilterCondition.AND:
                    return False

        return found_one

    if filters:
        return [x for x in nodes if filter_func(x)]
    else:
        return nodes

clear #

clear() -> None

Clear the vector store.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
443
444
445
446
447
448
449
def clear(self) -> None:
    """Clear the vector store."""
    if DEEPLAKE_V4:
        for i in range(len(self.vectorstore.ds) - 1, -1, -1):
            self.vectorstore.ds.delete(i)
    else:
        self.vectorstore.delete(filter=lambda x: True)

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add the embeddings and their nodes into DeepLake.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes with embeddings to insert.

required

Returns:

Type Description
List[str]

List[str]: List of ids inserted.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """Add the embeddings and their nodes into DeepLake.

    Args:
        nodes (List[BaseNode]): List of nodes with embeddings
            to insert.

    Returns:
        List[str]: List of ids inserted.
    """
    embedding = []
    metadata = []
    id_ = []
    text = []

    for node in nodes:
        embedding.append(node.get_embedding())
        metadata.append(
            node_to_metadata_dict(
                node, remove_text=False, flat_metadata=self.flat_metadata
            )
        )
        id_.append(node.node_id)
        text.append(node.get_content(metadata_mode=MetadataMode.NONE))

    kwargs = {self._id_tensor_name: id_}

    return self.vectorstore.add(
        embedding_data=embedding,
        metadata=metadata,
        embedding_tensor="embedding",
        text=text,
        return_ids=True,
        **kwargs,
    )

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
487
488
489
490
491
492
493
494
495
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    self.vectorstore.delete(filter={"metadata": {"doc_id": ref_doc_id}})

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

VectorStoreQuery class input, it has the following attributes: 1. query_embedding (List[float]): query embedding 2. similarity_top_k (int): top k most similar nodes

required
deep_memory bool

Whether to use deep memory for query execution.

required

Returns:

Type Description
VectorStoreQueryResult

VectorStoreQueryResult

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): VectorStoreQuery class input, it has
            the following attributes:
            1. query_embedding (List[float]): query embedding
            2. similarity_top_k (int): top k most similar nodes
        deep_memory (bool): Whether to use deep memory for query execution.

    Returns:
        VectorStoreQueryResult
    """
    query_embedding = cast(List[float], query.query_embedding)
    exec_option = kwargs.get("exec_option")
    deep_memory = kwargs.get("deep_memory")
    data = self.vectorstore.search(
        embedding=query_embedding,
        exec_option=exec_option,
        k=query.similarity_top_k,
        distance_metric="cosine_similarity",
        filter=query.filters,
        return_tensors=None,
        deep_memory=deep_memory,
    )

    similarities = data["score"]
    ids = data[self._id_tensor_name]
    metadatas = data["metadata"]
    nodes = []
    for metadata in metadatas:
        if "_node_type" not in metadata:
            metadata["_node_type"] = TextNode.class_name()
        nodes.append(metadata_dict_to_node(metadata))

    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)