Skip to content

Couchbase

CouchbaseVectorStore #

Bases: BasePydanticVectorStore

Couchbase Vector Store.

To use, you should have the couchbase python package installed.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-couchbase/llama_index/vector_stores/couchbase/base.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
class CouchbaseVectorStore(BasePydanticVectorStore):
    """
    Couchbase Vector Store.

    To use, you should have the ``couchbase`` python package installed.

    """

    stores_text: bool = True
    flat_metadata: bool = True
    # Default batch size
    DEFAULT_BATCH_SIZE: int = 100

    _cluster: Any = PrivateAttr()
    _bucket: Any = PrivateAttr()
    _scope: Any = PrivateAttr()
    _collection: Any = PrivateAttr()
    _bucket_name: str = PrivateAttr()
    _scope_name: str = PrivateAttr()
    _collection_name: str = PrivateAttr()
    _index_name: str = PrivateAttr()
    _id_key: str = PrivateAttr()
    _text_key: str = PrivateAttr()
    _embedding_key: str = PrivateAttr()
    _metadata_key: str = PrivateAttr()
    _scoped_index: bool = PrivateAttr()

    def __init__(
        self,
        cluster: Any,
        bucket_name: str,
        scope_name: str,
        collection_name: str,
        index_name: str,
        text_key: Optional[str] = "text",
        embedding_key: Optional[str] = "embedding",
        metadata_key: Optional[str] = "metadata",
        scoped_index: bool = True,
    ) -> None:
        """
        Initializes a connection to a Couchbase Vector Store.

        Args:
            cluster (Cluster): Couchbase cluster object with active connection.
            bucket_name (str): Name of bucket to store documents in.
            scope_name (str): Name of scope in the bucket to store documents in.
            collection_name (str): Name of collection in the scope to store documents in.
            index_name (str): Name of the Search index.
            text_key (Optional[str], optional): The field for the document text.
                Defaults to "text".
            embedding_key (Optional[str], optional): The field for the document embedding.
                Defaults to "embedding".
            metadata_key (Optional[str], optional): The field for the document metadata.
                Defaults to "metadata".
            scoped_index (Optional[bool]): specify whether the index is a scoped index.
                Set to True by default.

        Returns:
            None
        """
        try:
            from couchbase.cluster import Cluster
        except ImportError as e:
            raise ImportError(
                "Could not import couchbase python package. "
                "Please install couchbase SDK  with `pip install couchbase`."
            )

        if not isinstance(cluster, Cluster):
            raise ValueError(
                f"cluster should be an instance of couchbase.Cluster, "
                f"got {type(cluster)}"
            )

        super().__init__()
        self._cluster = cluster

        if not bucket_name:
            raise ValueError("bucket_name must be provided.")

        if not scope_name:
            raise ValueError("scope_name must be provided.")

        if not collection_name:
            raise ValueError("collection_name must be provided.")

        if not index_name:
            raise ValueError("index_name must be provided.")

        self._bucket_name = bucket_name
        self._scope_name = scope_name
        self._collection_name = collection_name
        self._text_key = text_key
        self._embedding_key = embedding_key
        self._index_name = index_name
        self._metadata_key = metadata_key
        self._scoped_index = scoped_index

        # Check if the bucket exists
        if not self._check_bucket_exists():
            raise ValueError(
                f"Bucket {self._bucket_name} does not exist. "
                " Please create the bucket before searching."
            )

        try:
            self._bucket = self._cluster.bucket(self._bucket_name)
            self._scope = self._bucket.scope(self._scope_name)
            self._collection = self._scope.collection(self._collection_name)
        except Exception as e:
            raise ValueError(
                "Error connecting to couchbase. "
                "Please check the connection and credentials."
            ) from e

        # Check if the scope and collection exists. Throws ValueError if they don't
        try:
            self._check_scope_and_collection_exists()
        except Exception as e:
            raise

        # Check if the index exists. Throws ValueError if it doesn't
        try:
            self._check_index_exists()
        except Exception as e:
            raise

        self._bucket = self._cluster.bucket(self._bucket_name)
        self._scope = self._bucket.scope(self._scope_name)
        self._collection = self._scope.collection(self._collection_name)

    def add(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
        """
        Add nodes to the collection and return their document IDs.

        Args:
            nodes (List[BaseNode]): List of nodes to add.
            **kwargs (Any): Additional keyword arguments.
                batch_size (int): Size of the batch for batch insert.

        Returns:
            List[str]: List of document IDs for the added nodes.
        """
        from couchbase.exceptions import DocumentExistsException

        batch_size = kwargs.get("batch_size", self.DEFAULT_BATCH_SIZE)
        documents_to_insert = []
        doc_ids = []

        for node in nodes:
            metadata = node_to_metadata_dict(
                node,
                remove_text=True,
                text_field=self._text_key,
                flat_metadata=self.flat_metadata,
            )
            doc_id: str = node.node_id

            doc = {
                self._text_key: node.get_content(metadata_mode=MetadataMode.NONE),
                self._embedding_key: node.embedding,
                self._metadata_key: metadata,
            }

            documents_to_insert.append({doc_id: doc})

        for i in range(0, len(documents_to_insert), batch_size):
            batch = documents_to_insert[i : i + batch_size]
            try:
                # convert the list of dicts to a single dict for batch insert
                insert_batch = {}
                for doc in batch:
                    insert_batch.update(doc)

                logger.debug("Inserting batch of documents to Couchbase", insert_batch)

                # upsert the batch of documents into the collection
                result = self._collection.upsert_multi(insert_batch)

                logger.debug(f"Insert result: {result.all_ok}")
                if result.all_ok:
                    doc_ids.extend(insert_batch.keys())

            except DocumentExistsException as e:
                logger.debug(f"Document already exists: {e}")

            logger.debug("Inserted batch of documents to Couchbase")
        return doc_ids

    def delete(self, ref_doc_id: str, **kwargs: Any) -> None:
        """
        Delete a document by its reference document ID.

        Args:
            ref_doc_id: The reference document ID to be deleted.

        Returns:
            None
        """
        try:
            document_field = self._metadata_key + ".ref_doc_id"
            self._scope.query(
                f"DELETE FROM `{self._collection_name}` WHERE {document_field} = '{ref_doc_id}'"
            ).execute()
            logger.debug(f"Deleted document {ref_doc_id}")
        except Exception:
            logger.error(f"Error deleting document {ref_doc_id}")
            raise

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """
        Executes a query in the vector store and returns the result.

        Args:
            query (VectorStoreQuery): The query object containing the search parameters.
            **kwargs (Any): Additional keyword arguments.
                cb_search_options (Dict): Search options to pass to Couchbase Search

        Returns:
            VectorStoreQueryResult: The result of the query containing the top-k nodes, similarities, and ids.
        """
        import couchbase.search as search
        from couchbase.options import SearchOptions
        from couchbase.vector_search import VectorQuery, VectorSearch

        fields = query.output_fields

        if not fields:
            fields = ["*"]

        # Document text field needs to be returned from the search
        if self._text_key not in fields and fields != ["*"]:
            fields.append(self._text_key)

        logger.debug("Output Fields: ", fields)

        k = query.similarity_top_k

        # Get the search options
        search_options = kwargs.get("cb_search_options", {})

        if search_options and query.filters:
            raise ValueError("Cannot use both filters and cb_search_options")
        elif query.filters:
            couchbase_options = _to_couchbase_filter(query.filters)
            logger.debug(f"Filters transformed to Couchbase: {couchbase_options}")
            search_options = couchbase_options

        logger.debug(f"Filters: {search_options}")

        # Create Search Request
        search_req = search.SearchRequest.create(
            VectorSearch.from_vector_query(
                VectorQuery(
                    self._embedding_key,
                    query.query_embedding,
                    k,
                )
            )
        )

        try:
            logger.debug("Querying Couchbase")
            if self._scoped_index:
                search_iter = self._scope.search(
                    self._index_name,
                    search_req,
                    SearchOptions(limit=k, fields=fields, raw=search_options),
                )

            else:
                search_iter = self._cluster.search(
                    self._index_name,
                    search_req,
                    SearchOptions(limit=k, fields=fields, raw=search_options),
                )
        except Exception as e:
            logger.debug(f"Search failed with error {e}")
            raise ValueError(f"Search failed with error: {e}")

        top_k_nodes = []
        top_k_scores = []
        top_k_ids = []

        # Parse the results
        for result in search_iter.rows():
            text = result.fields.pop(self._text_key, "")

            score = result.score

            # Format the metadata into a dictionary
            metadata_dict = self._format_metadata(result.fields)

            id = result.id

            try:
                node = metadata_dict_to_node(metadata_dict, text)
            except Exception:
                # Deprecated legacy logic for backwards compatibility
                node = TextNode(
                    text=text,
                    id_=id,
                    score=score,
                    metadata=metadata_dict,
                )

            top_k_nodes.append(node)
            top_k_scores.append(score)
            top_k_ids.append(id)

        return VectorStoreQueryResult(
            nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids
        )

    @property
    def client(self) -> Any:
        """
        Property function to access the client attribute.
        """
        return self._cluster

    def _check_bucket_exists(self) -> bool:
        """Check if the bucket exists in the linked Couchbase cluster.

        Returns:
            True if the bucket exists
        """
        bucket_manager = self._cluster.buckets()
        try:
            bucket_manager.get_bucket(self._bucket_name)
            return True
        except Exception as e:
            logger.debug("Error checking if bucket exists:", e)
            return False

    def _check_scope_and_collection_exists(self) -> bool:
        """Check if the scope and collection exists in the linked Couchbase bucket
        Returns:
            True if the scope and collection exist in the bucket
            Raises a ValueError if either is not found.
        """
        scope_collection_map: Dict[str, Any] = {}

        # Get a list of all scopes in the bucket
        for scope in self._bucket.collections().get_all_scopes():
            scope_collection_map[scope.name] = []

            # Get a list of all the collections in the scope
            for collection in scope.collections:
                scope_collection_map[scope.name].append(collection.name)

        # Check if the scope exists
        if self._scope_name not in scope_collection_map:
            raise ValueError(
                f"Scope {self._scope_name} not found in Couchbase "
                f"bucket {self._bucket_name}"
            )

        # Check if the collection exists in the scope
        if self._collection_name not in scope_collection_map[self._scope_name]:
            raise ValueError(
                f"Collection {self._collection_name} not found in scope "
                f"{self._scope_name} in Couchbase bucket {self._bucket_name}"
            )

        return True

    def _check_index_exists(self) -> bool:
        """Check if the Search index exists in the linked Couchbase cluster
        Returns:
            bool: True if the index exists, False otherwise.
            Raises a ValueError if the index does not exist.
        """
        if self._scoped_index:
            all_indexes = [
                index.name for index in self._scope.search_indexes().get_all_indexes()
            ]
            if self._index_name not in all_indexes:
                raise ValueError(
                    f"Index {self._index_name} does not exist. "
                    " Please create the index before searching."
                )
        else:
            all_indexes = [
                index.name for index in self._cluster.search_indexes().get_all_indexes()
            ]
            if self._index_name not in all_indexes:
                raise ValueError(
                    f"Index {self._index_name} does not exist. "
                    " Please create the index before searching."
                )

        return True

    def _format_metadata(self, row_fields: Dict[str, Any]) -> Dict[str, Any]:
        """Helper method to format the metadata from the Couchbase Search API.

        Args:
            row_fields (Dict[str, Any]): The fields to format.

        Returns:
            Dict[str, Any]: The formatted metadata.
        """
        metadata = {}
        for key, value in row_fields.items():
            # Couchbase Search returns the metadata key with a prefix
            # `metadata.` We remove it to get the original metadata key
            if key.startswith(self._metadata_key):
                new_key = key.split(self._metadata_key + ".")[-1]
                metadata[new_key] = value
            else:
                metadata[key] = value

        return metadata

client property #

client: Any

Property function to access the client attribute.

add #

add(nodes: List[BaseNode], **kwargs: Any) -> List[str]

Add nodes to the collection and return their document IDs.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes to add.

required
**kwargs Any

Additional keyword arguments. batch_size (int): Size of the batch for batch insert.

{}

Returns:

Type Description
List[str]

List[str]: List of document IDs for the added nodes.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-couchbase/llama_index/vector_stores/couchbase/base.py
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def add(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
    """
    Add nodes to the collection and return their document IDs.

    Args:
        nodes (List[BaseNode]): List of nodes to add.
        **kwargs (Any): Additional keyword arguments.
            batch_size (int): Size of the batch for batch insert.

    Returns:
        List[str]: List of document IDs for the added nodes.
    """
    from couchbase.exceptions import DocumentExistsException

    batch_size = kwargs.get("batch_size", self.DEFAULT_BATCH_SIZE)
    documents_to_insert = []
    doc_ids = []

    for node in nodes:
        metadata = node_to_metadata_dict(
            node,
            remove_text=True,
            text_field=self._text_key,
            flat_metadata=self.flat_metadata,
        )
        doc_id: str = node.node_id

        doc = {
            self._text_key: node.get_content(metadata_mode=MetadataMode.NONE),
            self._embedding_key: node.embedding,
            self._metadata_key: metadata,
        }

        documents_to_insert.append({doc_id: doc})

    for i in range(0, len(documents_to_insert), batch_size):
        batch = documents_to_insert[i : i + batch_size]
        try:
            # convert the list of dicts to a single dict for batch insert
            insert_batch = {}
            for doc in batch:
                insert_batch.update(doc)

            logger.debug("Inserting batch of documents to Couchbase", insert_batch)

            # upsert the batch of documents into the collection
            result = self._collection.upsert_multi(insert_batch)

            logger.debug(f"Insert result: {result.all_ok}")
            if result.all_ok:
                doc_ids.extend(insert_batch.keys())

        except DocumentExistsException as e:
            logger.debug(f"Document already exists: {e}")

        logger.debug("Inserted batch of documents to Couchbase")
    return doc_ids

delete #

delete(ref_doc_id: str, **kwargs: Any) -> None

Delete a document by its reference document ID.

Parameters:

Name Type Description Default
ref_doc_id str

The reference document ID to be deleted.

required

Returns:

Type Description
None

None

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-couchbase/llama_index/vector_stores/couchbase/base.py
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def delete(self, ref_doc_id: str, **kwargs: Any) -> None:
    """
    Delete a document by its reference document ID.

    Args:
        ref_doc_id: The reference document ID to be deleted.

    Returns:
        None
    """
    try:
        document_field = self._metadata_key + ".ref_doc_id"
        self._scope.query(
            f"DELETE FROM `{self._collection_name}` WHERE {document_field} = '{ref_doc_id}'"
        ).execute()
        logger.debug(f"Deleted document {ref_doc_id}")
    except Exception:
        logger.error(f"Error deleting document {ref_doc_id}")
        raise

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Executes a query in the vector store and returns the result.

Parameters:

Name Type Description Default
query VectorStoreQuery

The query object containing the search parameters.

required
**kwargs Any

Additional keyword arguments. cb_search_options (Dict): Search options to pass to Couchbase Search

{}

Returns:

Name Type Description
VectorStoreQueryResult VectorStoreQueryResult

The result of the query containing the top-k nodes, similarities, and ids.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-couchbase/llama_index/vector_stores/couchbase/base.py
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """
    Executes a query in the vector store and returns the result.

    Args:
        query (VectorStoreQuery): The query object containing the search parameters.
        **kwargs (Any): Additional keyword arguments.
            cb_search_options (Dict): Search options to pass to Couchbase Search

    Returns:
        VectorStoreQueryResult: The result of the query containing the top-k nodes, similarities, and ids.
    """
    import couchbase.search as search
    from couchbase.options import SearchOptions
    from couchbase.vector_search import VectorQuery, VectorSearch

    fields = query.output_fields

    if not fields:
        fields = ["*"]

    # Document text field needs to be returned from the search
    if self._text_key not in fields and fields != ["*"]:
        fields.append(self._text_key)

    logger.debug("Output Fields: ", fields)

    k = query.similarity_top_k

    # Get the search options
    search_options = kwargs.get("cb_search_options", {})

    if search_options and query.filters:
        raise ValueError("Cannot use both filters and cb_search_options")
    elif query.filters:
        couchbase_options = _to_couchbase_filter(query.filters)
        logger.debug(f"Filters transformed to Couchbase: {couchbase_options}")
        search_options = couchbase_options

    logger.debug(f"Filters: {search_options}")

    # Create Search Request
    search_req = search.SearchRequest.create(
        VectorSearch.from_vector_query(
            VectorQuery(
                self._embedding_key,
                query.query_embedding,
                k,
            )
        )
    )

    try:
        logger.debug("Querying Couchbase")
        if self._scoped_index:
            search_iter = self._scope.search(
                self._index_name,
                search_req,
                SearchOptions(limit=k, fields=fields, raw=search_options),
            )

        else:
            search_iter = self._cluster.search(
                self._index_name,
                search_req,
                SearchOptions(limit=k, fields=fields, raw=search_options),
            )
    except Exception as e:
        logger.debug(f"Search failed with error {e}")
        raise ValueError(f"Search failed with error: {e}")

    top_k_nodes = []
    top_k_scores = []
    top_k_ids = []

    # Parse the results
    for result in search_iter.rows():
        text = result.fields.pop(self._text_key, "")

        score = result.score

        # Format the metadata into a dictionary
        metadata_dict = self._format_metadata(result.fields)

        id = result.id

        try:
            node = metadata_dict_to_node(metadata_dict, text)
        except Exception:
            # Deprecated legacy logic for backwards compatibility
            node = TextNode(
                text=text,
                id_=id,
                score=score,
                metadata=metadata_dict,
            )

        top_k_nodes.append(node)
        top_k_scores.append(score)
        top_k_ids.append(id)

    return VectorStoreQueryResult(
        nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids
    )