Skip to content

Azureaisearch

CognitiveSearchVectorStore module-attribute #

CognitiveSearchVectorStore = AzureAISearchVectorStore

AzureAISearchVectorStore #

Bases: BasePydanticVectorStore

Azure AI Search vector store.

Examples:

pip install llama-index-vector-stores-azureaisearch

from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient
from azure.search.documents.indexes import SearchIndexClient
from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore
from llama_index.vector_stores.azureaisearch import IndexManagement, MetadataIndexFieldType

# Azure AI Search setup
search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY"
search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT"
search_service_api_version = "2024-07-01"
credential = AzureKeyCredential(search_service_api_key)

# Index name to use
index_name = "llamaindex-vector-demo"

# Use index client to demonstrate creating an index
index_client = SearchIndexClient(
    endpoint=search_service_endpoint,
    credential=credential,
)

metadata_fields = {
    "author": "author",
    "theme": ("topic", MetadataIndexFieldType.STRING),
    "director": "director",
}

# Creating an Azure AI Search Vector Store
vector_store = AzureAISearchVectorStore(
    search_or_index_client=index_client,
    filterable_metadata_field_keys=metadata_fields,
    hidden_field_keys=["embedding"],
    index_name=index_name,
    index_management=IndexManagement.CREATE_IF_NOT_EXISTS,
    id_field_key="id",
    chunk_field_key="chunk",
    embedding_field_key="embedding",
    embedding_dimensionality=1536,
    metadata_string_field_key="metadata",
    doc_id_field_key="doc_id",
    language_analyzer="en.lucene",
    vector_algorithm_type="exhaustiveKnn",
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
class AzureAISearchVectorStore(BasePydanticVectorStore):
    """
    Azure AI Search vector store.

    Examples:
        `pip install llama-index-vector-stores-azureaisearch`

        ```python
        from azure.core.credentials import AzureKeyCredential
        from azure.search.documents import SearchClient
        from azure.search.documents.indexes import SearchIndexClient
        from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore
        from llama_index.vector_stores.azureaisearch import IndexManagement, MetadataIndexFieldType

        # Azure AI Search setup
        search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY"
        search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT"
        search_service_api_version = "2024-07-01"
        credential = AzureKeyCredential(search_service_api_key)

        # Index name to use
        index_name = "llamaindex-vector-demo"

        # Use index client to demonstrate creating an index
        index_client = SearchIndexClient(
            endpoint=search_service_endpoint,
            credential=credential,
        )

        metadata_fields = {
            "author": "author",
            "theme": ("topic", MetadataIndexFieldType.STRING),
            "director": "director",
        }

        # Creating an Azure AI Search Vector Store
        vector_store = AzureAISearchVectorStore(
            search_or_index_client=index_client,
            filterable_metadata_field_keys=metadata_fields,
            hidden_field_keys=["embedding"],
            index_name=index_name,
            index_management=IndexManagement.CREATE_IF_NOT_EXISTS,
            id_field_key="id",
            chunk_field_key="chunk",
            embedding_field_key="embedding",
            embedding_dimensionality=1536,
            metadata_string_field_key="metadata",
            doc_id_field_key="doc_id",
            language_analyzer="en.lucene",
            vector_algorithm_type="exhaustiveKnn",
        )
        ```
    """

    stores_text: bool = True
    flat_metadata: bool = False

    _index_client: SearchIndexClient = PrivateAttr()
    _index_name: Optional[str] = PrivateAttr()
    _async_index_client: AsyncSearchIndexClient = PrivateAttr()
    _search_client: SearchClient = PrivateAttr()
    _async_search_client: AsyncSearchClient = PrivateAttr()
    _embedding_dimensionality: int = PrivateAttr()
    _language_analyzer: str = PrivateAttr()
    _hidden_field_keys: List[str] = PrivateAttr()
    _field_mapping: Dict[str, str] = PrivateAttr()
    _index_management: IndexManagement = PrivateAttr()
    _index_mapping: Callable[
        [Dict[str, str], Dict[str, Any]], Dict[str, str]
    ] = PrivateAttr()
    _metadata_to_index_field_map: Dict[
        str, Tuple[str, MetadataIndexFieldType]
    ] = PrivateAttr()
    _vector_profile_name: str = PrivateAttr()
    _compression_type: str = PrivateAttr()
    _user_agent: str = PrivateAttr()

    def _normalise_metadata_to_index_fields(
        self,
        filterable_metadata_field_keys: Union[
            List[str],
            Dict[str, str],
            Dict[str, Tuple[str, MetadataIndexFieldType]],
            None,
        ] = [],
    ) -> Dict[str, Tuple[str, MetadataIndexFieldType]]:
        index_field_spec: Dict[str, Tuple[str, MetadataIndexFieldType]] = {}

        if isinstance(filterable_metadata_field_keys, List):
            for field in filterable_metadata_field_keys:
                # Index field name and the metadata field name are the same
                # Use String as the default index field type
                index_field_spec[field] = (field, MetadataIndexFieldType.STRING)

        elif isinstance(filterable_metadata_field_keys, dict):
            for k, v in filterable_metadata_field_keys.items():
                if isinstance(v, tuple):
                    # Index field name and metadata field name may differ
                    # The index field type used is as supplied
                    index_field_spec[k] = v
                elif isinstance(v, list):
                    # Handle list types as COLLECTION
                    index_field_spec[k] = (k, MetadataIndexFieldType.COLLECTION)
                elif isinstance(v, bool):
                    index_field_spec[k] = (k, MetadataIndexFieldType.BOOLEAN)
                elif isinstance(v, int):
                    index_field_spec[k] = (k, MetadataIndexFieldType.INT32)
                elif isinstance(v, float):
                    index_field_spec[k] = (k, MetadataIndexFieldType.DOUBLE)
                elif isinstance(v, str):
                    index_field_spec[k] = (k, MetadataIndexFieldType.STRING)
                else:
                    # Index field name and metadata field name may differ
                    # Use String as the default index field type
                    index_field_spec[k] = (v, MetadataIndexFieldType.STRING)

        return index_field_spec

    def _index_exists(self, index_name: str) -> bool:
        return index_name in self._index_client.list_index_names()

    async def _aindex_exists(self, index_name: str) -> bool:
        return index_name in [
            name async for name in self._async_index_client.list_index_names()
        ]

    def _create_index_if_not_exists(self, index_name: str) -> None:
        if not self._index_exists(index_name):
            logger.info(
                f"Index {index_name} does not exist in Azure AI Search, creating index"
            )
            self._create_index(index_name)

    async def _acreate_index_if_not_exists(self, index_name: str) -> None:
        if not await self._aindex_exists(index_name):
            logger.info(
                f"Index {index_name} does not exist in Azure AI Search, creating index"
            )
            await self._acreate_index(index_name)

    def _create_metadata_index_fields(self) -> List[Any]:
        """Create a list of index fields for storing metadata values."""
        from azure.search.documents.indexes.models import SimpleField

        index_fields = []

        # create search fields
        for v in self._metadata_to_index_field_map.values():
            field_name, field_type = v

            # Skip if the field is already mapped
            if field_name in self._field_mapping.values():
                continue

            if field_type == MetadataIndexFieldType.STRING:
                index_field_type = "Edm.String"
            elif field_type == MetadataIndexFieldType.INT32:
                index_field_type = "Edm.Int32"
            elif field_type == MetadataIndexFieldType.INT64:
                index_field_type = "Edm.Int64"
            elif field_type == MetadataIndexFieldType.DOUBLE:
                index_field_type = "Edm.Double"
            elif field_type == MetadataIndexFieldType.BOOLEAN:
                index_field_type = "Edm.Boolean"
            elif field_type == MetadataIndexFieldType.COLLECTION:
                index_field_type = "Collection(Edm.String)"

            field = SimpleField(
                name=field_name,
                type=index_field_type,
                filterable=True,
                hidden=field_name in self._hidden_field_keys,
            )
            index_fields.append(field)

        return index_fields

    def _get_compressions(self) -> List[Any]:
        """Get the compressions for the vector search."""
        from azure.search.documents.indexes.models import (
            BinaryQuantizationCompression,
            ScalarQuantizationCompression,
        )

        compressions = []
        if self._compression_type == "binary":
            compressions.append(
                BinaryQuantizationCompression(compression_name="myBinaryCompression")
            )
        elif self._compression_type == "scalar":
            compressions.append(
                ScalarQuantizationCompression(compression_name="myScalarCompression")
            )
        return compressions

    def _create_index(self, index_name: Optional[str]) -> None:
        """
        Creates a default index based on the supplied index name, key field names and
        metadata filtering keys.
        """
        from azure.search.documents.indexes.models import (
            ExhaustiveKnnAlgorithmConfiguration,
            ExhaustiveKnnParameters,
            HnswAlgorithmConfiguration,
            HnswParameters,
            SearchableField,
            SearchField,
            SearchFieldDataType,
            SearchIndex,
            SemanticConfiguration,
            SemanticField,
            SemanticPrioritizedFields,
            SemanticSearch,
            SimpleField,
            VectorSearch,
            VectorSearchAlgorithmKind,
            VectorSearchAlgorithmMetric,
            VectorSearchProfile,
        )

        logger.info(f"Configuring {index_name} fields for Azure AI Search")
        fields = [
            SimpleField(
                name=self._field_mapping["id"],
                type="Edm.String",
                key=True,
                filterable=True,
                hidden=self._field_mapping["id"] in self._hidden_field_keys,
            ),
            SearchableField(
                name=self._field_mapping["chunk"],
                type="Edm.String",
                analyzer_name=self._language_analyzer,
                hidden=self._field_mapping["chunk"] in self._hidden_field_keys,
            ),
            SearchField(
                name=self._field_mapping["embedding"],
                type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
                searchable=True,
                vector_search_dimensions=self._embedding_dimensionality,
                vector_search_profile_name=self._vector_profile_name,
                hidden=self._field_mapping["embedding"] in self._hidden_field_keys,
            ),
            SimpleField(
                name=self._field_mapping["metadata"],
                type="Edm.String",
                hidden=self._field_mapping["metadata"] in self._hidden_field_keys,
            ),
            SimpleField(
                name=self._field_mapping["doc_id"],
                type="Edm.String",
                filterable=True,
                hidden=self._field_mapping["doc_id"] in self._hidden_field_keys,
            ),
        ]
        logger.info(f"Configuring {index_name} metadata fields")
        metadata_index_fields = self._create_metadata_index_fields()
        fields.extend(metadata_index_fields)
        logger.info(f"Configuring {index_name} vector search")
        # Determine the compression type
        compressions = self._get_compressions()

        logger.info(
            f"Configuring {index_name} vector search with {self._compression_type} compression"
        )
        # Configure the vector search algorithms and profiles
        vector_search = VectorSearch(
            algorithms=[
                HnswAlgorithmConfiguration(
                    name="myHnsw",
                    kind=VectorSearchAlgorithmKind.HNSW,
                    parameters=HnswParameters(
                        m=4,
                        ef_construction=400,
                        ef_search=500,
                        metric=VectorSearchAlgorithmMetric.COSINE,
                    ),
                ),
                ExhaustiveKnnAlgorithmConfiguration(
                    name="myExhaustiveKnn",
                    kind=VectorSearchAlgorithmKind.EXHAUSTIVE_KNN,
                    parameters=ExhaustiveKnnParameters(
                        metric=VectorSearchAlgorithmMetric.COSINE,
                    ),
                ),
            ],
            compressions=compressions,
            profiles=[
                VectorSearchProfile(
                    name="myHnswProfile",
                    algorithm_configuration_name="myHnsw",
                    compression_name=(
                        compressions[0].compression_name if compressions else None
                    ),
                ),
                VectorSearchProfile(
                    name="myExhaustiveKnnProfile",
                    algorithm_configuration_name="myExhaustiveKnn",
                    compression_name=None,  # Exhaustive KNN doesn't support compression at the moment
                ),
            ],
        )
        logger.info(f"Configuring {index_name} semantic search")
        semantic_config = SemanticConfiguration(
            name="mySemanticConfig",
            prioritized_fields=SemanticPrioritizedFields(
                content_fields=[SemanticField(field_name=self._field_mapping["chunk"])],
            ),
        )

        semantic_search = SemanticSearch(configurations=[semantic_config])

        index = SearchIndex(
            name=index_name,
            fields=fields,
            vector_search=vector_search,
            semantic_search=semantic_search,
        )

        logger.debug(f"Creating {index_name} search index")
        self._index_client.create_index(index)

    async def _acreate_index(self, index_name: Optional[str]) -> None:
        """
        Asynchronous version of index creation with optional compression.

            Creates a default index based on the supplied index name, key field names, and metadata filtering keys.
        """
        from azure.search.documents.indexes.models import (
            ExhaustiveKnnAlgorithmConfiguration,
            ExhaustiveKnnParameters,
            HnswAlgorithmConfiguration,
            HnswParameters,
            SearchField,
            SearchFieldDataType,
            SearchIndex,
            SearchableField,
            SemanticConfiguration,
            SemanticField,
            SemanticPrioritizedFields,
            SemanticSearch,
            SimpleField,
            VectorSearch,
            VectorSearchAlgorithmKind,
            VectorSearchAlgorithmMetric,
            VectorSearchProfile,
        )

        logger.info(f"Configuring {index_name} fields for Azure AI Search")
        fields = [
            SimpleField(name=self._field_mapping["id"], type="Edm.String", key=True),
            SearchableField(
                name=self._field_mapping["chunk"],
                type="Edm.String",
                analyzer_name=self._language_analyzer,
                hidden=self._field_mapping["chunk"] in self._hidden_field_keys,
            ),
            SearchField(
                name=self._field_mapping["embedding"],
                type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
                searchable=True,
                vector_search_dimensions=self._embedding_dimensionality,
                vector_search_profile_name=self._vector_profile_name,
                hidden=self._field_mapping["embedding"] in self._hidden_field_keys,
            ),
            SimpleField(
                name=self._field_mapping["metadata"],
                type="Edm.String",
                hidden=self._field_mapping["metadata"] in self._hidden_field_keys,
            ),
            SimpleField(
                name=self._field_mapping["doc_id"],
                type="Edm.String",
                filterable=True,
                hidden=self._field_mapping["doc_id"] in self._hidden_field_keys,
            ),
        ]
        logger.info(f"Configuring {index_name} metadata fields")
        metadata_index_fields = self._create_metadata_index_fields()
        fields.extend(metadata_index_fields)
        # Determine the compression type
        compressions = self._get_compressions()

        logger.info(
            f"Configuring {index_name} vector search with {self._compression_type} compression"
        )
        # Configure the vector search algorithms and profiles
        vector_search = VectorSearch(
            algorithms=[
                HnswAlgorithmConfiguration(
                    name="myHnsw",
                    kind=VectorSearchAlgorithmKind.HNSW,
                    # For more information on HNSw parameters, visit https://learn.microsoft.com//azure/search/vector-search-ranking#creating-the-hnsw-graph
                    parameters=HnswParameters(
                        m=4,
                        ef_construction=400,
                        ef_search=500,
                        metric=VectorSearchAlgorithmMetric.COSINE,
                    ),
                ),
                ExhaustiveKnnAlgorithmConfiguration(
                    name="myExhaustiveKnn",
                    kind=VectorSearchAlgorithmKind.EXHAUSTIVE_KNN,
                    parameters=ExhaustiveKnnParameters(
                        metric=VectorSearchAlgorithmMetric.COSINE,
                    ),
                ),
            ],
            compressions=compressions,
            profiles=[
                VectorSearchProfile(
                    name="myHnswProfile",
                    algorithm_configuration_name="myHnsw",
                    compression_name=(
                        compressions[0].compression_name if compressions else None
                    ),
                ),
                VectorSearchProfile(
                    name="myExhaustiveKnnProfile",
                    algorithm_configuration_name="myExhaustiveKnn",
                    compression_name=None,  # Exhaustive KNN doesn't support compression at the moment
                ),
            ],
        )
        logger.info(f"Configuring {index_name} semantic search")
        semantic_config = SemanticConfiguration(
            name="mySemanticConfig",
            prioritized_fields=SemanticPrioritizedFields(
                content_fields=[SemanticField(field_name=self._field_mapping["chunk"])],
            ),
        )

        semantic_search = SemanticSearch(configurations=[semantic_config])

        index = SearchIndex(
            name=index_name,
            fields=fields,
            vector_search=vector_search,
            semantic_search=semantic_search,
        )
        logger.debug(f"Creating {index_name} search index")

        await self._async_index_client.create_index(index)

    def _validate_index(self, index_name: Optional[str]) -> None:
        if self._index_client and index_name and not self._index_exists(index_name):
            raise ValueError(f"Validation failed, index {index_name} does not exist.")

    async def _avalidate_index(self, index_name: Optional[str]) -> None:
        if (
            self._async_index_client
            and index_name
            and not await self._aindex_exists(index_name)
        ):
            raise ValueError(f"Validation failed, index {index_name} does not exist.")

    def __init__(
        self,
        search_or_index_client: Any,
        id_field_key: str,
        chunk_field_key: str,
        embedding_field_key: str,
        metadata_string_field_key: str,
        doc_id_field_key: str,
        filterable_metadata_field_keys: Optional[
            Union[
                List[str],
                Dict[str, str],
                Dict[str, Tuple[str, MetadataIndexFieldType]],
            ]
        ] = None,
        hidden_field_keys: Optional[List[str]] = None,
        index_name: Optional[str] = None,
        index_mapping: Optional[
            Callable[[Dict[str, str], Dict[str, Any]], Dict[str, str]]
        ] = None,
        index_management: IndexManagement = IndexManagement.NO_VALIDATION,
        embedding_dimensionality: int = 1536,
        vector_algorithm_type: str = "exhaustiveKnn",
        # If we have content in other languages, it is better to enable the language analyzer to be adjusted in searchable fields.
        # https://learn.microsoft.com/en-us/azure/search/index-add-language-analyzers
        language_analyzer: str = "en.lucene",
        compression_type: str = "none",
        user_agent: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        # ruff: noqa: E501
        """
        Embeddings and documents are stored in an Azure AI Search index,
        a merge or upload approach is used when adding embeddings.
        When adding multiple embeddings the index is updated by this vector store
        in batches of 10 documents, very large nodes may result in failure due to
        the batch byte size being exceeded.

        Args:
            search_client (azure.search.documents.SearchClient):
                Client for index to populated / queried.
            id_field_key (str): Index field storing the id
            chunk_field_key (str): Index field storing the node text
            embedding_field_key (str): Index field storing the embedding vector
            metadata_string_field_key (str):
                Index field storing node metadata as a json string.
                Schema is arbitrary, to filter on metadata values they must be stored
                as separate fields in the index, use filterable_metadata_field_keys
                to specify the metadata values that should be stored in these filterable fields
            doc_id_field_key (str): Index field storing doc_id
            hidden_field_keys (List[str]):
                List of index fields that should be hidden from the client.
                This is useful for fields that are not needed for retrieving,
                but are used for similarity search, like the embedding field.
            index_mapping:
                Optional function with definition
                (enriched_doc: Dict[str, str], metadata: Dict[str, Any]): Dict[str,str]
                used to map document fields to the AI search index fields
                (return value of function).
                If none is specified a default mapping is provided which uses
                the field keys. The keys in the enriched_doc are
                ["id", "chunk", "embedding", "metadata"]
                The default mapping is:
                    - "id" to id_field_key
                    - "chunk" to chunk_field_key
                    - "embedding" to embedding_field_key
                    - "metadata" to metadata_field_key
            *kwargs (Any): Additional keyword arguments.

        Raises:
            ImportError: Unable to import `azure-search-documents`
            ValueError: If `search_or_index_client` is not provided
            ValueError: If `index_name` is not provided and `search_or_index_client`
                is of type azure.search.documents.SearchIndexClient
            ValueError: If `index_name` is provided and `search_or_index_client`
                is of type azure.search.documents.SearchClient
            ValueError: If `create_index_if_not_exists` is true and
                `search_or_index_client` is of type azure.search.documents.SearchClient
        """
        import_err_msg = (
            "`azure-search-documents` package not found, please run "
            "`pip install azure-search-documents==11.4.0`"
        )

        try:
            import azure.search.documents  # noqa
            from azure.search.documents import SearchClient
            from azure.search.documents.indexes import SearchIndexClient
        except ImportError:
            raise ImportError(import_err_msg)

        super().__init__()
        base_user_agent = "llamaindex-python"
        self._user_agent = (
            f"{base_user_agent} {user_agent}" if user_agent else base_user_agent
        )

        self._index_client: SearchIndexClient = cast(SearchIndexClient, None)
        self._async_index_client: AsyncSearchIndexClient = cast(
            AsyncSearchIndexClient, None
        )
        self._search_client: SearchClient = cast(SearchClient, None)
        self._async_search_client: AsyncSearchClient = cast(AsyncSearchClient, None)
        self._embedding_dimensionality = embedding_dimensionality
        self._index_name = index_name

        if vector_algorithm_type == "exhaustiveKnn":
            self._vector_profile_name = "myExhaustiveKnnProfile"
        elif vector_algorithm_type == "hnsw":
            self._vector_profile_name = "myHnswProfile"
        else:
            raise ValueError(
                "Only 'exhaustiveKnn' and 'hnsw' are supported for vector_algorithm_type"
            )

        self._language_analyzer = language_analyzer
        self._compression_type = compression_type.lower()

        # Validate search_or_index_client
        if search_or_index_client is not None:
            if isinstance(search_or_index_client, SearchIndexClient):
                # If SearchIndexClient is supplied so must index_name
                self._index_client = cast(SearchIndexClient, search_or_index_client)
                self._index_client._client._config.user_agent_policy.add_user_agent(
                    self._user_agent
                )
                if not index_name:
                    raise ValueError(
                        "index_name must be supplied if search_or_index_client is of "
                        "type azure.search.documents.SearchIndexClient"
                    )

                self._search_client = self._index_client.get_search_client(
                    index_name=index_name
                )
                self._search_client._client._config.user_agent_policy.add_user_agent(
                    self._user_agent
                )

            elif isinstance(search_or_index_client, AsyncSearchIndexClient):
                # If SearchIndexClient is supplied so must index_name
                self._async_index_client = cast(
                    AsyncSearchIndexClient, search_or_index_client
                )
                self._async_index_client._client._config.user_agent_policy.add_user_agent(
                    self._user_agent
                )

                if not index_name:
                    raise ValueError(
                        "index_name must be supplied if search_or_index_client is of "
                        "type azure.search.documents.aio.SearchIndexClient"
                    )

                self._async_search_client = self._async_index_client.get_search_client(
                    index_name=index_name
                )
                self._async_search_client._client._config.user_agent_policy.add_user_agent(
                    self._user_agent
                )

            elif isinstance(search_or_index_client, SearchClient):
                self._search_client = cast(SearchClient, search_or_index_client)
                self._search_client._client._config.user_agent_policy.add_user_agent(
                    self._user_agent
                )
                # Validate index_name
                if index_name:
                    raise ValueError(
                        "index_name cannot be supplied if search_or_index_client "
                        "is of type azure.search.documents.SearchClient"
                    )

            elif isinstance(search_or_index_client, AsyncSearchClient):
                self._async_search_client = cast(
                    AsyncSearchClient, search_or_index_client
                )
                self._async_search_client._client._config.user_agent_policy.add_user_agent(
                    self._user_agent
                )

                # Validate index_name
                if index_name:
                    raise ValueError(
                        "index_name cannot be supplied if search_or_index_client "
                        "is of type azure.search.documents.SearchClient"
                    )

            if isinstance(search_or_index_client, AsyncSearchIndexClient):
                if not self._async_index_client and not self._async_search_client:
                    raise ValueError(
                        "search_or_index_client must be of type "
                        "azure.search.documents.SearchIndexClient or "
                        "azure.search.documents.SearchClient"
                    )

            if isinstance(search_or_index_client, SearchIndexClient):
                if not self._index_client and not self._search_client:
                    raise ValueError(
                        "search_or_index_client must be of type "
                        "azure.search.documents.SearchIndexClient or "
                        "azure.search.documents.SearchClient"
                    )
        else:
            raise ValueError("search_or_index_client not specified")

        if index_management == IndexManagement.CREATE_IF_NOT_EXISTS and not (
            self._index_client or self._async_index_client
        ):
            raise ValueError(
                "index_management has value of IndexManagement.CREATE_IF_NOT_EXISTS "
                "but search_or_index_client is not of type "
                "azure.search.documents.SearchIndexClient or azure.search.documents.aio.SearchIndexClient "
            )

        self._index_management = index_management

        # Default field mapping
        field_mapping = {
            "id": id_field_key,
            "chunk": chunk_field_key,
            "embedding": embedding_field_key,
            "metadata": metadata_string_field_key,
            "doc_id": doc_id_field_key,
        }

        self._field_mapping = field_mapping
        self._hidden_field_keys = hidden_field_keys or []

        self._index_mapping = (
            self._default_index_mapping if index_mapping is None else index_mapping
        )

        # self._filterable_metadata_field_keys = filterable_metadata_field_keys
        self._metadata_to_index_field_map = self._normalise_metadata_to_index_fields(
            filterable_metadata_field_keys
        )

        # need to do lazy init for async client
        if not isinstance(search_or_index_client, AsyncSearchIndexClient):
            if self._index_management == IndexManagement.CREATE_IF_NOT_EXISTS:
                if index_name:
                    self._create_index_if_not_exists(index_name)

            if self._index_management == IndexManagement.VALIDATE_INDEX:
                self._validate_index(index_name)

    @property
    def client(self) -> Any:
        """Get client."""
        return self._search_client

    @property
    def aclient(self) -> Any:
        """Get async client."""
        return self._async_search_client

    def _default_index_mapping(
        self, enriched_doc: Dict[str, str], metadata: Dict[str, Any]
    ) -> Dict[str, str]:
        index_doc: Dict[str, str] = {}

        for field in self._field_mapping:
            index_doc[self._field_mapping[field]] = enriched_doc[field]

        for metadata_field_name, (
            index_field_name,
            _,
        ) in self._metadata_to_index_field_map.items():
            metadata_value = metadata.get(metadata_field_name)
            if metadata_value:
                index_doc[index_field_name] = metadata_value

        return index_doc

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Add nodes to index associated with the configured search client.

        Args:
            nodes: List[BaseNode]: nodes with embeddings

        """
        from azure.search.documents import IndexDocumentsBatch

        if not self._search_client:
            raise ValueError("Search client not initialized")

        accumulator = IndexDocumentsBatch()
        documents = []

        ids = []
        accumulated_size = 0
        max_size = DEFAULT_MAX_MB_SIZE  # 16MB in bytes
        max_docs = DEFAULT_MAX_BATCH_SIZE

        for node in nodes:
            logger.debug(f"Processing embedding: {node.node_id}")
            ids.append(node.node_id)

            index_document = self._create_index_document(node)
            document_size = len(json.dumps(index_document).encode("utf-8"))
            documents.append(index_document)
            accumulated_size += document_size

            accumulator.add_upload_actions(index_document)

            if len(documents) >= max_docs or accumulated_size >= max_size:
                logger.info(
                    f"Uploading batch of size {len(documents)}, "
                    f"current progress {len(ids)} of {len(nodes)}, "
                    f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
                )
                self._search_client.index_documents(accumulator)
                accumulator.dequeue_actions()
                documents = []
                accumulated_size = 0

        # Upload remaining batch
        if documents:
            logger.info(
                f"Uploading remaining batch of size {len(documents)}, "
                f"current progress {len(ids)} of {len(nodes)}, "
                f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
            )
            self._search_client.index_documents(accumulator)

        return ids

    async def async_add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Add nodes to index associated with the configured search client.

        Args:
            nodes: List[BaseNode]: nodes with embeddings

        """
        from azure.search.documents import IndexDocumentsBatch

        if not self._async_search_client:
            raise ValueError("Async Search client not initialized")

        if len(nodes) > 0:
            if self._index_management == IndexManagement.CREATE_IF_NOT_EXISTS:
                if self._index_name:
                    await self._acreate_index_if_not_exists(self._index_name)

            if self._index_management == IndexManagement.VALIDATE_INDEX:
                await self._avalidate_index(self._index_name)

        accumulator = IndexDocumentsBatch()
        documents = []

        ids = []
        accumulated_size = 0
        max_size = DEFAULT_MAX_MB_SIZE  # 16MB in bytes
        max_docs = DEFAULT_MAX_BATCH_SIZE

        for node in nodes:
            logger.debug(f"Processing embedding: {node.node_id}")
            ids.append(node.node_id)

            index_document = self._create_index_document(node)
            document_size = len(json.dumps(index_document).encode("utf-8"))
            documents.append(index_document)
            accumulated_size += document_size

            accumulator.add_upload_actions(index_document)

            if len(documents) >= max_docs or accumulated_size >= max_size:
                logger.info(
                    f"Uploading batch of size {len(documents)}, "
                    f"current progress {len(ids)} of {len(nodes)}, "
                    f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
                )
                await self._async_search_client.index_documents(accumulator)
                accumulator.dequeue_actions()
                documents = []
                accumulated_size = 0

        # Upload remaining batch
        if documents:
            logger.info(
                f"Uploading remaining batch of size {len(documents)}, "
                f"current progress {len(ids)} of {len(nodes)}, "
                f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
            )
            await self._async_search_client.index_documents(accumulator)

        return ids

    def _create_index_document(self, node: BaseNode) -> Dict[str, Any]:
        """Create AI Search index document from embedding result."""
        doc: Dict[str, Any] = {}
        doc["id"] = node.node_id
        doc["chunk"] = node.get_content(metadata_mode=MetadataMode.NONE) or ""
        doc["embedding"] = node.get_embedding()
        doc["doc_id"] = node.ref_doc_id

        node_metadata = node_to_metadata_dict(
            node,
            remove_text=True,
            flat_metadata=self.flat_metadata,
        )

        doc["metadata"] = json.dumps(node_metadata)

        return self._index_mapping(doc, node_metadata)

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete documents from the AI Search Index
        with doc_id_field_key field equal to ref_doc_id.
        """
        if not self._index_exists(self._index_name):
            return

        # Locate documents to delete
        filter = f'{self._field_mapping["doc_id"]} eq \'{ref_doc_id}\''
        batch_size = 1000

        while True:
            results = self._search_client.search(
                search_text="*",
                filter=filter,
                top=batch_size,
            )

            logger.debug(f"Searching with filter {filter}")

            docs_to_delete = [
                {"id": result[self._field_mapping["id"]]} for result in results
            ]

            if docs_to_delete:
                logger.debug(f"Deleting {len(docs_to_delete)} documents")
                self._search_client.delete_documents(docs_to_delete)
            else:
                break

    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete documents from the AI Search Index
        with doc_id_field_key field equal to ref_doc_id.
        """
        if not await self._aindex_exists(self._index_name):
            return

        # Locate documents to delete
        filter = f'{self._field_mapping["doc_id"]} eq \'{ref_doc_id}\''
        batch_size = 1000

        while True:
            results = await self._async_search_client.search(
                search_text="*",
                filter=filter,
                top=batch_size,
            )

            logger.debug(f"Searching with filter {filter}")

            docs_to_delete = [
                {"id": result[self._field_mapping["id"]]} async for result in results
            ]

            if docs_to_delete:
                logger.debug(f"Deleting {len(docs_to_delete)} documents")
                await self._async_search_client.delete_documents(docs_to_delete)
            else:
                break

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Delete documents from the AI Search Index.
        """
        if node_ids is None and filters is None:
            raise ValueError("Either node_ids or filters must be provided")

        filter = self._build_filter_delete_query(node_ids, filters)

        batch_size = 1000

        while True:
            results = self._search_client.search(
                search_text="*",
                filter=filter,
                top=batch_size,
            )

            logger.debug(f"Searching with filter {filter}")

            docs_to_delete = [
                {"id": result[self._field_mapping["id"]]} for result in results
            ]

            if docs_to_delete:
                logger.debug(f"Deleting {len(docs_to_delete)} documents")
                self._search_client.delete_documents(docs_to_delete)
            else:
                break

    async def adelete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Delete documents from the AI Search Index.
        """
        if node_ids is None and filters is None:
            raise ValueError("Either node_ids or filters must be provided")

        filter = self._build_filter_delete_query(node_ids, filters)

        batch_size = 1000

        while True:
            results = await self._async_search_client.search(
                search_text="*",
                filter=filter,
                top=batch_size,
            )

            logger.debug(f"Searching with filter {filter}")

            docs_to_delete = [
                {"id": result[self._field_mapping["id"]]} async for result in results
            ]

            if docs_to_delete:
                logger.debug(f"Deleting {len(docs_to_delete)} documents")
                await self._async_search_client.delete_documents(docs_to_delete)
            else:
                break

    def _build_filter_delete_query(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> str:
        """Build the OData filter query for the deletion process."""
        if node_ids:
            return " or ".join(
                [
                    f'{self._field_mapping["id"]} eq \'{node_id}\''
                    for node_id in node_ids
                ]
            )

        if filters and filters.filters:
            # Find the filter with key doc_ids
            doc_ids_filter = next(
                (f for f in filters.filters if f.key == "doc_id"), None
            )
            if doc_ids_filter and doc_ids_filter.operator == FilterOperator.IN:
                # use search.in to filter on multiple values
                doc_ids_str = ",".join(doc_ids_filter.value)
                return (
                    f"search.in({self._field_mapping['doc_id']}, '{doc_ids_str}', ',')"
                )

            return self._create_odata_filter(filters)

        raise ValueError("Invalid filter configuration")

    def _create_odata_filter(self, metadata_filters: MetadataFilters) -> str:
        """Generate an OData filter string using supplied metadata filters."""
        odata_filter: List[str] = []

        for subfilter in metadata_filters.filters:
            if isinstance(subfilter, MetadataFilters):
                nested_filter = self._create_odata_filter(subfilter)
                odata_filter.append(f"({nested_filter})")
                continue

            # Join values with ' or ' to create an OR condition inside the any function
            metadata_mapping = self._metadata_to_index_field_map.get(subfilter.key)

            if not metadata_mapping:
                raise ValueError(
                    f"Metadata field '{subfilter.key}' is missing a mapping to an index field, "
                    "provide entry in 'filterable_metadata_field_keys' for this "
                    "vector store"
                )
            index_field = metadata_mapping[0]

            if subfilter.operator == FilterOperator.IN:
                value_str = " or ".join(
                    [
                        f"t eq '{value}'" if isinstance(value, str) else f"t eq {value}"
                        for value in subfilter.value
                    ]
                )
                odata_filter.append(f"{index_field}/any(t: {value_str})")

            elif subfilter.operator == FilterOperator.EQ:
                if isinstance(subfilter.value, str):
                    escaped_value = "".join(
                        [("''" if s == "'" else s) for s in subfilter.value]
                    )
                    odata_filter.append(f"{index_field} eq '{escaped_value}'")
                else:
                    odata_filter.append(f"{index_field} eq {subfilter.value}")

            else:
                raise ValueError(f"Unsupported filter operator {subfilter.operator}")

        if metadata_filters.condition == FilterCondition.AND:
            odata_expr = " and ".join(odata_filter)
        elif metadata_filters.condition == FilterCondition.OR:
            odata_expr = " or ".join(odata_filter)
        else:
            raise ValueError(
                f"Unsupported filter condition {metadata_filters.condition}"
            )

        logger.info(f"Odata filter: {odata_expr}")

        return odata_expr

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        odata_filter = None
        if query.filters is not None:
            odata_filter = self._create_odata_filter(query.filters)
        azure_query_result_search: AzureQueryResultSearchBase = (
            AzureQueryResultSearchDefault(
                query, self._field_mapping, odata_filter, self._search_client
            )
        )
        if query.mode == VectorStoreQueryMode.SPARSE:
            azure_query_result_search = AzureQueryResultSearchSparse(
                query, self._field_mapping, odata_filter, self._search_client
            )
        elif query.mode == VectorStoreQueryMode.HYBRID:
            azure_query_result_search = AzureQueryResultSearchHybrid(
                query, self._field_mapping, odata_filter, self._search_client
            )
        elif query.mode == VectorStoreQueryMode.SEMANTIC_HYBRID:
            azure_query_result_search = AzureQueryResultSearchSemanticHybrid(
                query, self._field_mapping, odata_filter, self._search_client
            )
        return azure_query_result_search.search()

    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:
        odata_filter = None

        # NOTE: users can provide odata_filters directly to the query
        odata_filters = kwargs.get("odata_filters")
        if odata_filters is not None:
            odata_filter = odata_filter
        else:
            if query.filters is not None:
                odata_filter = self._create_odata_filter(query.filters)

        azure_query_result_search: AzureQueryResultSearchBase = (
            AzureQueryResultSearchDefault(
                query, self._field_mapping, odata_filter, self._async_search_client
            )
        )
        if query.mode == VectorStoreQueryMode.SPARSE:
            azure_query_result_search = AzureQueryResultSearchSparse(
                query, self._field_mapping, odata_filter, self._async_search_client
            )
        elif query.mode == VectorStoreQueryMode.HYBRID:
            azure_query_result_search = AzureQueryResultSearchHybrid(
                query, self._field_mapping, odata_filter, self._async_search_client
            )
        elif query.mode == VectorStoreQueryMode.SEMANTIC_HYBRID:
            azure_query_result_search = AzureQueryResultSearchSemanticHybrid(
                query, self._field_mapping, odata_filter, self._async_search_client
            )
        return await azure_query_result_search.asearch()

    def _build_filter_str(
        self,
        field_mapping: Dict[str, str],
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> Optional[str]:
        """Build OData filter string from node IDs and metadata filters.

        Args:
            field_mapping (Dict[str, str]): Field mapping dictionary
            node_ids (Optional[List[str]]): List of node IDs to filter by
            filters (Optional[MetadataFilters]): Metadata filters to apply

        Returns:
            Optional[str]: OData filter string or None if no filters
        """
        filter_str = None
        if node_ids is not None:
            filter_str = " or ".join(
                [f"{field_mapping['id']} eq '{node_id}'" for node_id in node_ids]
            )

        if filters is not None:
            metadata_filter = self._create_odata_filter(filters)
            if filter_str is not None:
                filter_str = f"({filter_str}) or ({metadata_filter})"
            else:
                filter_str = metadata_filter

        return filter_str

    def get_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        limit: Optional[int] = None,
    ) -> List[BaseNode]:
        """Get nodes from the Azure AI Search index.

        Args:
            node_ids (Optional[List[str]]): List of node IDs to retrieve.
            filters (Optional[MetadataFilters]): Metadata filters to apply.
            limit (Optional[int]): Maximum number of nodes to retrieve.

        Returns:
            List[BaseNode]: List of nodes retrieved from the index.
        """
        if not self._search_client:
            raise ValueError("Search client not initialized")

        filter_str = self._build_filter_str(self._field_mapping, node_ids, filters)
        nodes = []
        batch_size = 1000  # Azure Search batch size limit

        while True:
            try:
                search_request = create_search_request(
                    self._field_mapping, filter_str, batch_size, len(nodes)
                )
                results = self._search_client.search(**search_request)
            except Exception as e:
                handle_search_error(e)
                break

            batch_nodes = [
                create_node_from_result(result, self._field_mapping)
                for result in results
            ]

            nodes, continue_fetching = process_batch_results(
                batch_nodes, nodes, batch_size, limit
            )
            if not continue_fetching:
                break

        return nodes

    async def aget_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        limit: Optional[int] = None,
    ) -> List[BaseNode]:
        """Get nodes asynchronously from the Azure AI Search index.

        Args:
            node_ids (Optional[List[str]]): List of node IDs to retrieve.
            filters (Optional[MetadataFilters]): Metadata filters to apply.
            limit (Optional[int]): Maximum number of nodes to retrieve.

        Returns:
            List[BaseNode]: List of nodes retrieved from the index.
        """
        if not self._async_search_client:
            raise ValueError("Async Search client not initialized")

        filter_str = self._build_filter_str(self._field_mapping, node_ids, filters)
        nodes = []
        batch_size = 1000  # Azure Search batch size limit

        while True:
            try:
                search_request = create_search_request(
                    self._field_mapping, filter_str, batch_size, len(nodes)
                )
                results = await self._async_search_client.search(**search_request)
            except Exception as e:
                handle_search_error(e)
                break

            batch_nodes = []
            async for result in results:
                batch_nodes.append(create_node_from_result(result, self._field_mapping))

            nodes, continue_fetching = process_batch_results(
                batch_nodes, nodes, batch_size, limit
            )
            if not continue_fetching:
                break

        return nodes

client property #

client: Any

Get client.

aclient property #

aclient: Any

Get async client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index associated with the configured search client.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: nodes with embeddings

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Add nodes to index associated with the configured search client.

    Args:
        nodes: List[BaseNode]: nodes with embeddings

    """
    from azure.search.documents import IndexDocumentsBatch

    if not self._search_client:
        raise ValueError("Search client not initialized")

    accumulator = IndexDocumentsBatch()
    documents = []

    ids = []
    accumulated_size = 0
    max_size = DEFAULT_MAX_MB_SIZE  # 16MB in bytes
    max_docs = DEFAULT_MAX_BATCH_SIZE

    for node in nodes:
        logger.debug(f"Processing embedding: {node.node_id}")
        ids.append(node.node_id)

        index_document = self._create_index_document(node)
        document_size = len(json.dumps(index_document).encode("utf-8"))
        documents.append(index_document)
        accumulated_size += document_size

        accumulator.add_upload_actions(index_document)

        if len(documents) >= max_docs or accumulated_size >= max_size:
            logger.info(
                f"Uploading batch of size {len(documents)}, "
                f"current progress {len(ids)} of {len(nodes)}, "
                f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
            )
            self._search_client.index_documents(accumulator)
            accumulator.dequeue_actions()
            documents = []
            accumulated_size = 0

    # Upload remaining batch
    if documents:
        logger.info(
            f"Uploading remaining batch of size {len(documents)}, "
            f"current progress {len(ids)} of {len(nodes)}, "
            f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
        )
        self._search_client.index_documents(accumulator)

    return ids

async_add async #

async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index associated with the configured search client.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: nodes with embeddings

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
async def async_add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Add nodes to index associated with the configured search client.

    Args:
        nodes: List[BaseNode]: nodes with embeddings

    """
    from azure.search.documents import IndexDocumentsBatch

    if not self._async_search_client:
        raise ValueError("Async Search client not initialized")

    if len(nodes) > 0:
        if self._index_management == IndexManagement.CREATE_IF_NOT_EXISTS:
            if self._index_name:
                await self._acreate_index_if_not_exists(self._index_name)

        if self._index_management == IndexManagement.VALIDATE_INDEX:
            await self._avalidate_index(self._index_name)

    accumulator = IndexDocumentsBatch()
    documents = []

    ids = []
    accumulated_size = 0
    max_size = DEFAULT_MAX_MB_SIZE  # 16MB in bytes
    max_docs = DEFAULT_MAX_BATCH_SIZE

    for node in nodes:
        logger.debug(f"Processing embedding: {node.node_id}")
        ids.append(node.node_id)

        index_document = self._create_index_document(node)
        document_size = len(json.dumps(index_document).encode("utf-8"))
        documents.append(index_document)
        accumulated_size += document_size

        accumulator.add_upload_actions(index_document)

        if len(documents) >= max_docs or accumulated_size >= max_size:
            logger.info(
                f"Uploading batch of size {len(documents)}, "
                f"current progress {len(ids)} of {len(nodes)}, "
                f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
            )
            await self._async_search_client.index_documents(accumulator)
            accumulator.dequeue_actions()
            documents = []
            accumulated_size = 0

    # Upload remaining batch
    if documents:
        logger.info(
            f"Uploading remaining batch of size {len(documents)}, "
            f"current progress {len(ids)} of {len(nodes)}, "
            f"accumulated size {accumulated_size / (1024 * 1024):.2f} MB"
        )
        await self._async_search_client.index_documents(accumulator)

    return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete documents from the AI Search Index with doc_id_field_key field equal to ref_doc_id.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete documents from the AI Search Index
    with doc_id_field_key field equal to ref_doc_id.
    """
    if not self._index_exists(self._index_name):
        return

    # Locate documents to delete
    filter = f'{self._field_mapping["doc_id"]} eq \'{ref_doc_id}\''
    batch_size = 1000

    while True:
        results = self._search_client.search(
            search_text="*",
            filter=filter,
            top=batch_size,
        )

        logger.debug(f"Searching with filter {filter}")

        docs_to_delete = [
            {"id": result[self._field_mapping["id"]]} for result in results
        ]

        if docs_to_delete:
            logger.debug(f"Deleting {len(docs_to_delete)} documents")
            self._search_client.delete_documents(docs_to_delete)
        else:
            break

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete documents from the AI Search Index with doc_id_field_key field equal to ref_doc_id.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete documents from the AI Search Index
    with doc_id_field_key field equal to ref_doc_id.
    """
    if not await self._aindex_exists(self._index_name):
        return

    # Locate documents to delete
    filter = f'{self._field_mapping["doc_id"]} eq \'{ref_doc_id}\''
    batch_size = 1000

    while True:
        results = await self._async_search_client.search(
            search_text="*",
            filter=filter,
            top=batch_size,
        )

        logger.debug(f"Searching with filter {filter}")

        docs_to_delete = [
            {"id": result[self._field_mapping["id"]]} async for result in results
        ]

        if docs_to_delete:
            logger.debug(f"Deleting {len(docs_to_delete)} documents")
            await self._async_search_client.delete_documents(docs_to_delete)
        else:
            break

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Delete documents from the AI Search Index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Delete documents from the AI Search Index.
    """
    if node_ids is None and filters is None:
        raise ValueError("Either node_ids or filters must be provided")

    filter = self._build_filter_delete_query(node_ids, filters)

    batch_size = 1000

    while True:
        results = self._search_client.search(
            search_text="*",
            filter=filter,
            top=batch_size,
        )

        logger.debug(f"Searching with filter {filter}")

        docs_to_delete = [
            {"id": result[self._field_mapping["id"]]} for result in results
        ]

        if docs_to_delete:
            logger.debug(f"Deleting {len(docs_to_delete)} documents")
            self._search_client.delete_documents(docs_to_delete)
        else:
            break

adelete_nodes async #

adelete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Delete documents from the AI Search Index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
async def adelete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Delete documents from the AI Search Index.
    """
    if node_ids is None and filters is None:
        raise ValueError("Either node_ids or filters must be provided")

    filter = self._build_filter_delete_query(node_ids, filters)

    batch_size = 1000

    while True:
        results = await self._async_search_client.search(
            search_text="*",
            filter=filter,
            top=batch_size,
        )

        logger.debug(f"Searching with filter {filter}")

        docs_to_delete = [
            {"id": result[self._field_mapping["id"]]} async for result in results
        ]

        if docs_to_delete:
            logger.debug(f"Deleting {len(docs_to_delete)} documents")
            await self._async_search_client.delete_documents(docs_to_delete)
        else:
            break

get_nodes #

get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, limit: Optional[int] = None) -> List[BaseNode]

Get nodes from the Azure AI Search index.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

List of node IDs to retrieve.

None
filters Optional[MetadataFilters]

Metadata filters to apply.

None
limit Optional[int]

Maximum number of nodes to retrieve.

None

Returns:

Type Description
List[BaseNode]

List[BaseNode]: List of nodes retrieved from the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
def get_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    limit: Optional[int] = None,
) -> List[BaseNode]:
    """Get nodes from the Azure AI Search index.

    Args:
        node_ids (Optional[List[str]]): List of node IDs to retrieve.
        filters (Optional[MetadataFilters]): Metadata filters to apply.
        limit (Optional[int]): Maximum number of nodes to retrieve.

    Returns:
        List[BaseNode]: List of nodes retrieved from the index.
    """
    if not self._search_client:
        raise ValueError("Search client not initialized")

    filter_str = self._build_filter_str(self._field_mapping, node_ids, filters)
    nodes = []
    batch_size = 1000  # Azure Search batch size limit

    while True:
        try:
            search_request = create_search_request(
                self._field_mapping, filter_str, batch_size, len(nodes)
            )
            results = self._search_client.search(**search_request)
        except Exception as e:
            handle_search_error(e)
            break

        batch_nodes = [
            create_node_from_result(result, self._field_mapping)
            for result in results
        ]

        nodes, continue_fetching = process_batch_results(
            batch_nodes, nodes, batch_size, limit
        )
        if not continue_fetching:
            break

    return nodes

aget_nodes async #

aget_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, limit: Optional[int] = None) -> List[BaseNode]

Get nodes asynchronously from the Azure AI Search index.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

List of node IDs to retrieve.

None
filters Optional[MetadataFilters]

Metadata filters to apply.

None
limit Optional[int]

Maximum number of nodes to retrieve.

None

Returns:

Type Description
List[BaseNode]

List[BaseNode]: List of nodes retrieved from the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
async def aget_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    limit: Optional[int] = None,
) -> List[BaseNode]:
    """Get nodes asynchronously from the Azure AI Search index.

    Args:
        node_ids (Optional[List[str]]): List of node IDs to retrieve.
        filters (Optional[MetadataFilters]): Metadata filters to apply.
        limit (Optional[int]): Maximum number of nodes to retrieve.

    Returns:
        List[BaseNode]: List of nodes retrieved from the index.
    """
    if not self._async_search_client:
        raise ValueError("Async Search client not initialized")

    filter_str = self._build_filter_str(self._field_mapping, node_ids, filters)
    nodes = []
    batch_size = 1000  # Azure Search batch size limit

    while True:
        try:
            search_request = create_search_request(
                self._field_mapping, filter_str, batch_size, len(nodes)
            )
            results = await self._async_search_client.search(**search_request)
        except Exception as e:
            handle_search_error(e)
            break

        batch_nodes = []
        async for result in results:
            batch_nodes.append(create_node_from_result(result, self._field_mapping))

        nodes, continue_fetching = process_batch_results(
            batch_nodes, nodes, batch_size, limit
        )
        if not continue_fetching:
            break

    return nodes