89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093 | class Neo4jPropertyGraphStore(PropertyGraphStore):
r"""
Neo4j Property Graph Store.
This class implements a Neo4j property graph store.
If you are using local Neo4j instead of aura, here's a helpful
command for launching the docker container:
```bash
docker run \
-p 7474:7474 -p 7687:7687 \
-v $PWD/data:/data -v $PWD/plugins:/plugins \
--name neo4j-apoc \
-e NEO4J_apoc_export_file_enabled=true \
-e NEO4J_apoc_import_file_enabled=true \
-e NEO4J_apoc_import_file_use__neo4j__config=true \
-e NEO4JLABS_PLUGINS=\\[\"apoc\"\\] \
neo4j:latest
```
Args:
username (str): The username for the Neo4j database.
password (str): The password for the Neo4j database.
url (str): The URL for the Neo4j database.
database (Optional[str]): The name of the database to connect to. Defaults to "neo4j".
timeout (Optional[float]): The timeout for transactions in seconds.
Useful for terminating long-running queries.
By default, there is no timeout set.
Examples:
`pip install llama-index-graph-stores-neo4j`
```python
from llama_index.core.indices.property_graph import PropertyGraphIndex
from llama_index.graph_stores.neo4j import Neo4jPropertyGraphStore
# Create a Neo4jPropertyGraphStore instance
graph_store = Neo4jPropertyGraphStore(
username="neo4j",
password="neo4j",
url="bolt://localhost:7687",
database="neo4j"
)
# create the index
index = PropertyGraphIndex.from_documents(
documents,
property_graph_store=graph_store,
)
# Close the neo4j connection explicitly.
graph_store.close()
```
"""
supports_structured_queries: bool = True
supports_vector_queries: bool = True
text_to_cypher_template: PromptTemplate = DEFAULT_CYPHER_TEMPALTE
def __init__(
self,
username: str,
password: str,
url: str,
database: Optional[str] = "neo4j",
refresh_schema: bool = True,
sanitize_query_output: bool = True,
enhanced_schema: bool = False,
create_indexes: bool = True,
timeout: Optional[float] = None,
**neo4j_kwargs: Any,
) -> None:
self.sanitize_query_output = sanitize_query_output
self.enhanced_schema = enhanced_schema
self._driver = neo4j.GraphDatabase.driver(
url,
auth=(username, password),
notifications_min_severity="OFF",
**neo4j_kwargs,
)
self._async_driver = neo4j.AsyncGraphDatabase.driver(
url,
auth=(username, password),
notifications_min_severity="OFF",
**neo4j_kwargs,
)
self._database = database
self._timeout = timeout
self.structured_schema = {}
if refresh_schema:
self.refresh_schema()
# Verify version to check if we can use vector index
self.verify_version()
# Create index for faster imports and retrieval
if create_indexes:
self.structured_query(
f"""CREATE CONSTRAINT IF NOT EXISTS FOR (n:`{BASE_NODE_LABEL}`)
REQUIRE n.id IS UNIQUE;"""
)
self.structured_query(
f"""CREATE CONSTRAINT IF NOT EXISTS FOR (n:`{BASE_ENTITY_LABEL}`)
REQUIRE n.id IS UNIQUE;"""
)
if self._supports_vector_index:
self.structured_query(
f"CREATE VECTOR INDEX {VECTOR_INDEX_NAME} IF NOT EXISTS "
"FOR (m:__Entity__) ON m.embedding"
)
@property
def client(self):
return self._driver
def close(self) -> None:
self._driver.close()
def refresh_schema(self) -> None:
"""Refresh the schema."""
node_query_results = self.structured_query(
node_properties_query,
param_map={
"EXCLUDED_LABELS": [
*EXCLUDED_LABELS,
BASE_ENTITY_LABEL,
BASE_NODE_LABEL,
]
},
)
node_properties = (
[el["output"] for el in node_query_results] if node_query_results else []
)
rels_query_result = self.structured_query(
rel_properties_query, param_map={"EXCLUDED_LABELS": EXCLUDED_RELS}
)
rel_properties = (
[el["output"] for el in rels_query_result] if rels_query_result else []
)
rel_objs_query_result = self.structured_query(
rel_query,
param_map={
"EXCLUDED_LABELS": [
*EXCLUDED_LABELS,
BASE_ENTITY_LABEL,
BASE_NODE_LABEL,
]
},
)
relationships = (
[el["output"] for el in rel_objs_query_result]
if rel_objs_query_result
else []
)
# Get constraints & indexes
try:
constraint = self.structured_query("SHOW CONSTRAINTS")
index = self.structured_query(
"CALL apoc.schema.nodes() YIELD label, properties, type, size, "
"valuesSelectivity WHERE type = 'RANGE' RETURN *, "
"size * valuesSelectivity as distinctValues"
)
except (
neo4j.exceptions.ClientError
): # Read-only user might not have access to schema information
constraint = []
index = []
self.structured_schema = {
"node_props": {el["labels"]: el["properties"] for el in node_properties},
"rel_props": {el["type"]: el["properties"] for el in rel_properties},
"relationships": relationships,
"metadata": {"constraint": constraint, "index": index},
}
schema_counts = self.structured_query(
"CALL apoc.meta.subGraph({}) YIELD nodes, relationships "
"RETURN nodes, [rel in relationships | {name:apoc.any.property"
"(rel, 'type'), count: apoc.any.property(rel, 'count')}]"
" AS relationships"
)
# Update node info
for node in schema_counts[0].get("nodes", []):
# Skip bloom labels
if node["name"] in EXCLUDED_LABELS:
continue
node_props = self.structured_schema["node_props"].get(node["name"])
if not node_props: # The node has no properties
continue
enhanced_cypher = self._enhanced_schema_cypher(
node["name"], node_props, node["count"] < EXHAUSTIVE_SEARCH_LIMIT
)
enhanced_info = self.structured_query(enhanced_cypher)[0]["output"]
for prop in node_props:
# Map to custom types
# Text
if prop["type"] == "STRING" and any(
len(value) >= LONG_TEXT_THRESHOLD
for value in enhanced_info[prop["property"]]["values"]
):
enhanced_info[prop["property"]]["type"] = "TEXT"
# Embedding
if (
prop["type"] == "LIST"
and enhanced_info[prop["property"]]["max_size"] > LIST_LIMIT
):
enhanced_info[prop["property"]]["type"] = "EMBEDDING"
if prop["property"] in enhanced_info:
prop.update(enhanced_info[prop["property"]])
# Update rel info
for rel in schema_counts[0].get("relationships", []):
# Skip bloom labels
if rel["name"] in EXCLUDED_RELS:
continue
rel_props = self.structured_schema["rel_props"].get(rel["name"])
if not rel_props: # The rel has no properties
continue
enhanced_cypher = self._enhanced_schema_cypher(
rel["name"],
rel_props,
rel["count"] < EXHAUSTIVE_SEARCH_LIMIT,
is_relationship=True,
)
try:
enhanced_info = self.structured_query(enhanced_cypher)[0]["output"]
for prop in rel_props:
if prop["property"] in enhanced_info:
prop.update(enhanced_info[prop["property"]])
except neo4j.exceptions.ClientError:
# Sometimes the types are not consistent in the db
pass
def upsert_nodes(self, nodes: List[LabelledNode]) -> None:
# Lists to hold separated types
entity_dicts: List[dict] = []
chunk_dicts: List[dict] = []
# Sort by type
for item in nodes:
if isinstance(item, EntityNode):
entity_dicts.append({**item.dict(), "id": item.id})
elif isinstance(item, ChunkNode):
chunk_dicts.append({**item.dict(), "id": item.id})
else:
# Log that we do not support these types of nodes
# Or raise an error?
pass
if chunk_dicts:
for index in range(0, len(chunk_dicts), CHUNK_SIZE):
chunked_params = chunk_dicts[index : index + CHUNK_SIZE]
self.structured_query(
f"""
UNWIND $data AS row
MERGE (c:{BASE_NODE_LABEL} {{id: row.id}})
SET c.text = row.text, c:Chunk
WITH c, row
SET c += row.properties
WITH c, row.embedding AS embedding
WHERE embedding IS NOT NULL
CALL db.create.setNodeVectorProperty(c, 'embedding', embedding)
RETURN count(*)
""",
param_map={"data": chunked_params},
)
if entity_dicts:
for index in range(0, len(entity_dicts), CHUNK_SIZE):
chunked_params = entity_dicts[index : index + CHUNK_SIZE]
self.structured_query(
f"""
UNWIND $data AS row
MERGE (e:{BASE_NODE_LABEL} {{id: row.id}})
SET e += apoc.map.clean(row.properties, [], [])
SET e.name = row.name, e:`{BASE_ENTITY_LABEL}`
WITH e, row
CALL apoc.create.addLabels(e, [row.label])
YIELD node
WITH e, row
CALL (e, row) {{
WITH e, row
WHERE row.embedding IS NOT NULL
CALL db.create.setNodeVectorProperty(e, 'embedding', row.embedding)
RETURN count(*) AS count
}}
WITH e, row WHERE row.properties.triplet_source_id IS NOT NULL
MERGE (c:{BASE_NODE_LABEL} {{id: row.properties.triplet_source_id}})
MERGE (e)<-[:MENTIONS]-(c)
""",
param_map={"data": chunked_params},
)
def upsert_relations(self, relations: List[Relation]) -> None:
"""Add relations."""
params = [r.dict() for r in relations]
for index in range(0, len(params), CHUNK_SIZE):
chunked_params = params[index : index + CHUNK_SIZE]
self.structured_query(
f"""
UNWIND $data AS row
MERGE (source: {BASE_NODE_LABEL} {{id: row.source_id}})
ON CREATE SET source:Chunk
MERGE (target: {BASE_NODE_LABEL} {{id: row.target_id}})
ON CREATE SET target:Chunk
WITH source, target, row
CALL apoc.merge.relationship(source, row.label, {{}}, row.properties, target) YIELD rel
RETURN count(*)
""",
param_map={"data": chunked_params},
)
def get(
self,
properties: Optional[dict] = None,
ids: Optional[List[str]] = None,
) -> List[LabelledNode]:
"""Get nodes."""
cypher_statement = f"MATCH (e: {BASE_NODE_LABEL}) "
params = {}
cypher_statement += "WHERE e.id IS NOT NULL "
if ids:
cypher_statement += "AND e.id in $ids "
params["ids"] = ids
if properties:
prop_list = []
for i, prop in enumerate(properties):
prop_list.append(f"e.`{prop}` = $property_{i}")
params[f"property_{i}"] = properties[prop]
cypher_statement += " AND " + " AND ".join(prop_list)
return_statement = """
WITH e
RETURN e.id AS name,
[l in labels(e) WHERE l <> '__Entity__' | l][0] AS type,
e{.* , embedding: Null, id: Null} AS properties
"""
cypher_statement += return_statement
response = self.structured_query(cypher_statement, param_map=params)
response = response if response else []
nodes = []
for record in response:
# text indicates a chunk node
# none on the type indicates an implicit node, likely a chunk node
if "text" in record["properties"] or record["type"] is None:
text = record["properties"].pop("text", "")
nodes.append(
ChunkNode(
id_=record["name"],
text=text,
properties=remove_empty_values(record["properties"]),
)
)
else:
nodes.append(
EntityNode(
name=record["name"],
label=record["type"],
properties=remove_empty_values(record["properties"]),
)
)
return nodes
def get_triplets(
self,
entity_names: Optional[List[str]] = None,
relation_names: Optional[List[str]] = None,
properties: Optional[dict] = None,
ids: Optional[List[str]] = None,
) -> List[Triplet]:
# TODO: handle ids of chunk nodes
cypher_statement = f"MATCH (e:`{BASE_ENTITY_LABEL}`) "
params = {}
if entity_names or properties or ids:
cypher_statement += "WHERE "
if entity_names:
cypher_statement += "e.name in $entity_names "
params["entity_names"] = entity_names
if ids:
cypher_statement += "e.id in $ids "
params["ids"] = ids
if properties:
prop_list = []
for i, prop in enumerate(properties):
prop_list.append(f"e.`{prop}` = $property_{i}")
params[f"property_{i}"] = properties[prop]
cypher_statement += " AND ".join(prop_list)
return_statement = f"""
WITH e
CALL (e) {{
WITH e
MATCH (e)-[r{':`' + '`|`'.join(relation_names) + '`' if relation_names else ''}]->(t:`{BASE_ENTITY_LABEL}`)
RETURN e.name AS source_id, [l in labels(e) WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS source_type,
e{{.* , embedding: Null, name: Null}} AS source_properties,
type(r) AS type,
r{{.*}} AS rel_properties,
t.name AS target_id, [l in labels(t) WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS target_type,
t{{.* , embedding: Null, name: Null}} AS target_properties
UNION ALL
WITH e
MATCH (e)<-[r{':`' + '`|`'.join(relation_names) + '`' if relation_names else ''}]-(t:`{BASE_ENTITY_LABEL}`)
RETURN t.name AS source_id, [l in labels(t) WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS source_type,
t{{.* , embedding: Null, name: Null}} AS source_properties,
type(r) AS type,
r{{.*}} AS rel_properties,
e.name AS target_id, [l in labels(e) WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS target_type,
e{{.* , embedding: Null, name: Null}} AS target_properties
}}
RETURN source_id, source_type, type, rel_properties, target_id, target_type, source_properties, target_properties"""
cypher_statement += return_statement
data = self.structured_query(cypher_statement, param_map=params)
data = data if data else []
triples = []
for record in data:
source = EntityNode(
name=record["source_id"],
label=record["source_type"],
properties=remove_empty_values(record["source_properties"]),
)
target = EntityNode(
name=record["target_id"],
label=record["target_type"],
properties=remove_empty_values(record["target_properties"]),
)
rel = Relation(
source_id=record["source_id"],
target_id=record["target_id"],
label=record["type"],
properties=remove_empty_values(record["rel_properties"]),
)
triples.append([source, rel, target])
return triples
def get_rel_map(
self,
graph_nodes: List[LabelledNode],
depth: int = 2,
limit: int = 30,
ignore_rels: Optional[List[str]] = None,
) -> List[Triplet]:
"""Get depth-aware rel map."""
triples = []
ids = [node.id for node in graph_nodes]
# Needs some optimization
response = self.structured_query(
f"""
WITH $ids AS id_list
UNWIND range(0, size(id_list) - 1) AS idx
MATCH (e:`{BASE_ENTITY_LABEL}`)
WHERE e.id = id_list[idx]
MATCH p=(e)-[r*1..{depth}]-(other)
WHERE ALL(rel in relationships(p) WHERE type(rel) <> 'MENTIONS')
UNWIND relationships(p) AS rel
WITH distinct rel, idx
WITH startNode(rel) AS source,
type(rel) AS type,
rel{{.*}} AS rel_properties,
endNode(rel) AS endNode,
idx
LIMIT toInteger($limit)
RETURN source.id AS source_id, [l in labels(source)
WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS source_type,
source{{.* , embedding: Null, id: Null}} AS source_properties,
type,
rel_properties,
endNode.id AS target_id, [l in labels(endNode)
WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS target_type,
endNode{{.* , embedding: Null, id: Null}} AS target_properties,
idx
ORDER BY idx
LIMIT toInteger($limit)
""",
param_map={"ids": ids, "limit": limit},
)
response = response if response else []
ignore_rels = ignore_rels or []
for record in response:
if record["type"] in ignore_rels:
continue
source = EntityNode(
name=record["source_id"],
label=record["source_type"],
properties=remove_empty_values(record["source_properties"]),
)
target = EntityNode(
name=record["target_id"],
label=record["target_type"],
properties=remove_empty_values(record["target_properties"]),
)
rel = Relation(
source_id=record["source_id"],
target_id=record["target_id"],
label=record["type"],
properties=remove_empty_values(record["rel_properties"]),
)
triples.append([source, rel, target])
return triples
def structured_query(
self,
query: str,
param_map: Optional[Dict[str, Any]] = None,
) -> Any:
param_map = param_map or {}
try:
data, _, _ = self._driver.execute_query(
neo4j.Query(text=query, timeout=self._timeout),
database_=self._database,
parameters_=param_map,
)
full_result = [d.data() for d in data]
if self.sanitize_query_output:
return [value_sanitize(el) for el in full_result]
return full_result
except neo4j.exceptions.Neo4jError as e:
if not (
(
( # isCallInTransactionError
e.code == "Neo.DatabaseError.Statement.ExecutionFailed"
or e.code
== "Neo.DatabaseError.Transaction.TransactionStartFailed"
)
and "in an implicit transaction" in e.message
)
or ( # isPeriodicCommitError
e.code == "Neo.ClientError.Statement.SemanticError"
and (
"in an open transaction is not possible" in e.message
or "tried to execute in an explicit transaction" in e.message
)
)
):
raise
# Fallback to allow implicit transactions
with self._driver.session(database=self._database) as session:
data = session.run(
neo4j.Query(text=query, timeout=self._timeout), param_map
)
full_result = [d.data() for d in data]
if self.sanitize_query_output:
return [value_sanitize(el) for el in full_result]
return full_result
def vector_query(
self, query: VectorStoreQuery, **kwargs: Any
) -> Tuple[List[LabelledNode], List[float]]:
"""Query the graph store with a vector store query."""
conditions = []
filter_params = {}
if query.filters:
for index, filter in enumerate(query.filters.filters):
conditions.append(
f"{'NOT' if filter.operator.value in ['nin'] else ''} e.`{filter.key}` "
f"{convert_operator(filter.operator.value)} $param_{index}"
)
filter_params[f"param_{index}"] = filter.value
filters = (
f" {query.filters.condition.value} ".join(conditions)
if conditions
else "1 = 1"
)
if not query.filters and self._supports_vector_index:
data = self.structured_query(
f"""CALL db.index.vector.queryNodes('{VECTOR_INDEX_NAME}', $limit, $embedding)
YIELD node, score RETURN node.id AS name,
[l in labels(node) WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS type,
node{{.* , embedding: Null, name: Null, id: Null}} AS properties,
score
""",
param_map={
"embedding": query.query_embedding,
"limit": query.similarity_top_k,
},
)
else:
data = self.structured_query(
f"""MATCH (e:`{BASE_ENTITY_LABEL}`)
WHERE e.embedding IS NOT NULL AND size(e.embedding) = $dimension AND ({filters})
WITH e, vector.similarity.cosine(e.embedding, $embedding) AS score
ORDER BY score DESC LIMIT toInteger($limit)
RETURN e.id AS name,
[l in labels(e) WHERE NOT l IN ['{BASE_ENTITY_LABEL}', '{BASE_NODE_LABEL}'] | l][0] AS type,
e{{.* , embedding: Null, name: Null, id: Null}} AS properties,
score""",
param_map={
"embedding": query.query_embedding,
"dimension": len(query.query_embedding),
"limit": query.similarity_top_k,
**filter_params,
},
)
data = data if data else []
nodes = []
scores = []
for record in data:
node = EntityNode(
name=record["name"],
label=record["type"],
properties=remove_empty_values(record["properties"]),
)
nodes.append(node)
scores.append(record["score"])
return (nodes, scores)
def delete(
self,
entity_names: Optional[List[str]] = None,
relation_names: Optional[List[str]] = None,
properties: Optional[dict] = None,
ids: Optional[List[str]] = None,
) -> None:
"""Delete matching data."""
if entity_names:
self.structured_query(
"MATCH (n) WHERE n.name IN $entity_names DETACH DELETE n",
param_map={"entity_names": entity_names},
)
if ids:
self.structured_query(
"MATCH (n) WHERE n.id IN $ids DETACH DELETE n",
param_map={"ids": ids},
)
if relation_names:
for rel in relation_names:
self.structured_query(f"MATCH ()-[r:`{rel}`]->() DELETE r")
if properties:
cypher = "MATCH (e) WHERE "
prop_list = []
params = {}
for i, prop in enumerate(properties):
prop_list.append(f"e.`{prop}` = $property_{i}")
params[f"property_{i}"] = properties[prop]
cypher += " AND ".join(prop_list)
self.structured_query(cypher + " DETACH DELETE e", param_map=params)
def _enhanced_schema_cypher(
self,
label_or_type: str,
properties: List[Dict[str, Any]],
exhaustive: bool,
is_relationship: bool = False,
) -> str:
if is_relationship:
match_clause = f"MATCH ()-[n:`{label_or_type}`]->()"
else:
match_clause = f"MATCH (n:`{label_or_type}`)"
with_clauses = []
return_clauses = []
output_dict = {}
if exhaustive:
for prop in properties:
prop_name = prop["property"]
prop_type = prop["type"]
if prop_type == "STRING":
with_clauses.append(
f"collect(distinct substring(toString(coalesce(n.`{prop_name}`, '')), 0, {LONG_TEXT_THRESHOLD})) "
f"AS `{prop_name}_values`"
)
return_clauses.append(
f"values:`{prop_name}_values`[..{DISTINCT_VALUE_LIMIT}],"
f" distinct_count: size(`{prop_name}_values`)"
)
elif prop_type in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
with_clauses.append(f"min(n.`{prop_name}`) AS `{prop_name}_min`")
with_clauses.append(f"max(n.`{prop_name}`) AS `{prop_name}_max`")
with_clauses.append(
f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
)
return_clauses.append(
f"min: toString(`{prop_name}_min`), "
f"max: toString(`{prop_name}_max`), "
f"distinct_count: `{prop_name}_distinct`"
)
elif prop_type == "LIST":
with_clauses.append(
f"min(size(coalesce(n.`{prop_name}`, []))) AS `{prop_name}_size_min`, "
f"max(size(coalesce(n.`{prop_name}`, []))) AS `{prop_name}_size_max`, "
# Get first 3 sub-elements of the first element as sample values
f"collect(n.`{prop_name}`)[0][..3] AS `{prop_name}_values`"
)
return_clauses.append(
f"min_size: `{prop_name}_size_min`, "
f"max_size: `{prop_name}_size_max`, "
f"values:`{prop_name}_values`"
)
elif prop_type in ["BOOLEAN", "POINT", "DURATION"]:
continue
output_dict[prop_name] = "{" + return_clauses.pop() + "}"
else:
# Just sample 5 random nodes
match_clause += " WITH n LIMIT 5"
for prop in properties:
prop_name = prop["property"]
prop_type = prop["type"]
# Check if indexed property, we can still do exhaustive
prop_index = [
el
for el in self.structured_schema["metadata"]["index"]
if el["label"] == label_or_type
and el["properties"] == [prop_name]
and el["type"] == "RANGE"
]
if prop_type == "STRING":
if (
prop_index
and prop_index[0].get("size") > 0
and prop_index[0].get("distinctValues") <= DISTINCT_VALUE_LIMIT
):
distinct_values = self.query(
f"CALL apoc.schema.properties.distinct("
f"'{label_or_type}', '{prop_name}') YIELD value"
)[0]["value"]
return_clauses.append(
f"values: {distinct_values},"
f" distinct_count: {len(distinct_values)}"
)
else:
with_clauses.append(
f"collect(distinct substring(n.`{prop_name}`, 0, {LONG_TEXT_THRESHOLD})) "
f"AS `{prop_name}_values`"
)
return_clauses.append(f"values: `{prop_name}_values`")
elif prop_type in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
if not prop_index:
with_clauses.append(
f"collect(distinct toString(coalesce(n.`{prop_name}`, ''))) "
f"AS `{prop_name}_values`"
)
return_clauses.append(f"values: `{prop_name}_values`")
else:
with_clauses.append(
f"min(n.`{prop_name}`) AS `{prop_name}_min`"
)
with_clauses.append(
f"max(n.`{prop_name}`) AS `{prop_name}_max`"
)
with_clauses.append(
f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
)
return_clauses.append(
f"min: toString(`{prop_name}_min`), "
f"max: toString(`{prop_name}_max`), "
f"distinct_count: `{prop_name}_distinct`"
)
elif prop_type == "LIST":
with_clauses.append(
f"min(size(coalesce(n.`{prop_name}`, []))) AS `{prop_name}_size_min`, "
f"max(size(coalesce(n.`{prop_name}`, []))) AS `{prop_name}_size_max`, "
# Get first 3 sub-elements of the first element as sample values
f"collect(n.`{prop_name}`)[0][..3] AS `{prop_name}_values`"
)
return_clauses.append(
f"min_size: `{prop_name}_size_min`, "
f"max_size: `{prop_name}_size_max`, "
f"values:`{prop_name}_values`"
)
elif prop_type in ["BOOLEAN", "POINT", "DURATION"]:
continue
output_dict[prop_name] = "{" + return_clauses.pop() + "}"
with_clause = "WITH " + ",\n ".join(with_clauses)
return_clause = (
"RETURN {"
+ ", ".join(f"`{k}`: {v}" for k, v in output_dict.items())
+ "} AS output"
)
# Combine all parts of the Cypher query
return f"{match_clause}\n{with_clause}\n{return_clause}"
def get_schema(self, refresh: bool = False) -> Any:
if refresh:
self.refresh_schema()
return self.structured_schema
def get_schema_str(
self,
refresh: bool = False,
exclude_types: List[str] = [],
include_types: List[str] = [],
) -> str:
schema = self.get_schema(refresh=refresh)
def filter_func(x: str) -> bool:
return x in include_types if include_types else x not in exclude_types
filtered_schema: Dict[str, Any] = {
"node_props": {
k: v for k, v in schema.get("node_props", {}).items() if filter_func(k)
},
"rel_props": {
k: v for k, v in schema.get("rel_props", {}).items() if filter_func(k)
},
"relationships": [
r
for r in schema.get("relationships", [])
if all(filter_func(r[t]) for t in ["start", "end", "type"])
],
}
formatted_node_props = []
formatted_rel_props = []
if self.enhanced_schema:
# Enhanced formatting for nodes
for node_type, properties in filtered_schema["node_props"].items():
formatted_node_props.append(f"- **{node_type}**")
for prop in properties:
example = ""
if prop["type"] == "STRING" and prop.get("values"):
if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
example = (
f'Example: "{clean_string_values(prop["values"][0])}"'
if prop["values"]
else ""
)
else: # If less than 10 possible values return all
example = (
(
"Available options: "
f'{[clean_string_values(el) for el in prop["values"]]}'
)
if prop["values"]
else ""
)
elif prop["type"] == "TEXT":
example = (
f'Example: "{clean_string_values(prop["values"][0])}"'
if prop["values"]
else ""
)
elif prop["type"] in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
if prop.get("min") is not None:
example = f'Min: {prop["min"]}, Max: {prop["max"]}'
else:
example = (
f'Example: "{prop["values"][0]}"'
if prop.get("values")
else ""
)
elif prop["type"] == "LIST":
# Skip embeddings
# if not prop.get("min_size") or prop["min_size"] > LIST_LIMIT:
# continue
example = (
f'Min Size: {prop.get("min_size", "N/A")}, '
f'Max Size: {prop.get("max_size", "N/A")}, '
+ (
f'Example: [{prop["values"][0]}]'
if prop.get("values") and len(prop["values"]) > 0
else ""
)
)
formatted_node_props.append(
f" - `{prop['property']}`: {prop['type']} {example}"
)
# Enhanced formatting for relationships
for rel_type, properties in filtered_schema["rel_props"].items():
formatted_rel_props.append(f"- **{rel_type}**")
for prop in properties:
example = ""
if prop["type"] == "STRING":
if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
example = (
f'Example: "{clean_string_values(prop["values"][0])}"'
if prop.get("values")
else ""
)
else: # If less than 10 possible values return all
example = (
(
"Available options: "
f'{[clean_string_values(el) for el in prop["values"]]}'
)
if prop.get("values")
else ""
)
elif prop["type"] in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
if prop.get("min"): # If we have min/max
example = f'Min: {prop["min"]}, Max: {prop["max"]}'
else: # return a single value
example = (
f'Example: "{prop["values"][0]}"'
if prop.get("values")
else ""
)
elif prop["type"] == "LIST":
# Skip embeddings
if prop["min_size"] > LIST_LIMIT:
continue
example = f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
formatted_rel_props.append(
f" - `{prop['property']}: {prop['type']}` {example}"
)
else:
# Format node properties
for label, props in filtered_schema["node_props"].items():
props_str = ", ".join(
[f"{prop['property']}: {prop['type']}" for prop in props]
)
formatted_node_props.append(f"{label} {{{props_str}}}")
# Format relationship properties using structured_schema
for type, props in filtered_schema["rel_props"].items():
props_str = ", ".join(
[f"{prop['property']}: {prop['type']}" for prop in props]
)
formatted_rel_props.append(f"{type} {{{props_str}}}")
# Format relationships
formatted_rels = [
f"(:{el['start']})-[:{el['type']}]->(:{el['end']})"
for el in filtered_schema["relationships"]
]
return "\n".join(
[
"Node properties:",
"\n".join(formatted_node_props),
"Relationship properties:",
"\n".join(formatted_rel_props),
"The relationships:",
"\n".join(formatted_rels),
]
)
def verify_version(self) -> None:
"""
Check if the connected Neo4j database version supports vector indexing
without specifying embedding dimension.
Queries the Neo4j database to retrieve its version and compares it
against a target version (5.23.0) that is known to support vector
indexing. Raises a ValueError if the connected Neo4j version is
not supported.
"""
db_data = self.structured_query("CALL dbms.components()")
version = db_data[0]["versions"][0]
if "aura" in version:
version_tuple = (*map(int, version.split("-")[0].split(".")), 0)
else:
version_tuple = tuple(map(int, version.split(".")))
target_version = (5, 23, 0)
if version_tuple >= target_version:
self._supports_vector_index = True
else:
self._supports_vector_index = False
|