Skip to content

Memgraph

MemgraphGraphStore #

Bases: GraphStore

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
class MemgraphGraphStore(GraphStore):
    def __init__(
        self,
        username: str,
        password: str,
        url: str,
        database: str = "memgraph",
        node_label: str = "Entity",
        **kwargs: Any,
    ) -> None:
        try:
            import neo4j
        except ImportError:
            raise ImportError("Please install neo4j: pip install neo4j")
        self.node_label = node_label
        self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password))
        self._database = database
        self.schema = ""
        # verify connection
        try:
            self._driver.verify_connectivity()
        except neo4j.exceptions.ServiceUnavailable:
            raise ValueError(
                "Could not connect to Memgraph database. "
                "Please ensure that the url is correct"
            )
        except neo4j.exceptions.AuthError:
            raise ValueError(
                "Could not connect to Memgraph database. "
                "Please ensure that the username and password are correct"
            )
        # set schema
        self.refresh_schema()

        # create constraint
        self.query(
            """
            CREATE CONSTRAINT ON (n:%s) ASSERT n.id IS UNIQUE;
            """
            % (self.node_label)
        )

        # create index
        self.query(
            """
            CREATE INDEX ON :%s(id);
            """
            % (self.node_label)
        )

    @property
    def client(self) -> Any:
        return self._driver

    def query(self, query: str, param_map: Optional[Dict[str, Any]] = {}) -> Any:
        """Execute a Cypher query."""
        with self._driver.session(database=self._database) as session:
            result = session.run(query, param_map)
            return [record.data() for record in result]

    def get(self, subj: str) -> List[List[str]]:
        """Get triplets."""
        query = f"""
            MATCH (n1:{self.node_label})-[r]->(n2:{self.node_label})
            WHERE n1.id = $subj
            RETURN type(r), n2.id;
        """

        with self._driver.session(database=self._database) as session:
            data = session.run(query, {"subj": subj})
            return [record.values() for record in data]

    def get_rel_map(
        self, subjs: Optional[List[str]] = None, depth: int = 2
    ) -> Dict[str, List[List[str]]]:
        """Get flat relation map."""
        rel_map: Dict[Any, List[Any]] = {}
        if subjs is None or len(subjs) == 0:
            return rel_map

        query = (
            f"""MATCH p=(n1:{self.node_label})-[*1..{depth}]->() """
            f"""{"WHERE n1.id IN $subjs" if subjs else ""} """
            "UNWIND relationships(p) AS rel "
            "WITH n1.id AS subj, collect([type(rel), endNode(rel).id]) AS rels "
            "RETURN subj, rels"
        )

        data = list(self.query(query, {"subjs": subjs}))
        if not data:
            return rel_map

        for record in data:
            rel_map[record["subj"]] = record["rels"]

        return rel_map

    def upsert_triplet(self, subj: str, rel: str, obj: str) -> None:
        """Add triplet."""
        query = f"""
            MERGE (n1:`{self.node_label}` {{id:$subj}})
            MERGE (n2:`{self.node_label}` {{id:$obj}})
            MERGE (n1)-[:`{rel.replace(" ", "_").upper()}`]->(n2)
        """
        self.query(query, {"subj": subj, "obj": obj})

    def delete(self, subj: str, rel: str, obj: str) -> None:
        """Delete triplet."""
        query = f"""
            MATCH (n1:`{self.node_label}`)-[r:`{rel}`]->(n2:`{self.node_label}`)
            WHERE n1.id = $subj AND n2.id = $obj
            DELETE r
        """
        self.query(query, {"subj": subj, "obj": obj})

    def refresh_schema(self) -> None:
        """
        Refreshes the Memgraph graph schema information.
        """
        node_properties = self.query(node_properties_query)
        relationships_properties = self.query(rel_properties_query)
        relationships = self.query(rel_query)

        self.schema = f"""
        Node properties are the following:
        {node_properties}
        Relationship properties are the following:
        {relationships_properties}
        The relationships are the following:
        {relationships}
        """

    def get_schema(self, refresh: bool = False) -> str:
        """Get the schema of the MemgraphGraph store."""
        if self.schema and not refresh:
            return self.schema
        self.refresh_schema()
        logger.debug(f"get_schema() schema:\n{self.schema}")
        return self.schema

query #

query(query: str, param_map: Optional[Dict[str, Any]] = {}) -> Any

Execute a Cypher query.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
85
86
87
88
89
def query(self, query: str, param_map: Optional[Dict[str, Any]] = {}) -> Any:
    """Execute a Cypher query."""
    with self._driver.session(database=self._database) as session:
        result = session.run(query, param_map)
        return [record.data() for record in result]

get #

get(subj: str) -> List[List[str]]

Get triplets.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def get(self, subj: str) -> List[List[str]]:
    """Get triplets."""
    query = f"""
        MATCH (n1:{self.node_label})-[r]->(n2:{self.node_label})
        WHERE n1.id = $subj
        RETURN type(r), n2.id;
    """

    with self._driver.session(database=self._database) as session:
        data = session.run(query, {"subj": subj})
        return [record.values() for record in data]

get_rel_map #

get_rel_map(subjs: Optional[List[str]] = None, depth: int = 2) -> Dict[str, List[List[str]]]

Get flat relation map.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def get_rel_map(
    self, subjs: Optional[List[str]] = None, depth: int = 2
) -> Dict[str, List[List[str]]]:
    """Get flat relation map."""
    rel_map: Dict[Any, List[Any]] = {}
    if subjs is None or len(subjs) == 0:
        return rel_map

    query = (
        f"""MATCH p=(n1:{self.node_label})-[*1..{depth}]->() """
        f"""{"WHERE n1.id IN $subjs" if subjs else ""} """
        "UNWIND relationships(p) AS rel "
        "WITH n1.id AS subj, collect([type(rel), endNode(rel).id]) AS rels "
        "RETURN subj, rels"
    )

    data = list(self.query(query, {"subjs": subjs}))
    if not data:
        return rel_map

    for record in data:
        rel_map[record["subj"]] = record["rels"]

    return rel_map

upsert_triplet #

upsert_triplet(subj: str, rel: str, obj: str) -> None

Add triplet.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
128
129
130
131
132
133
134
135
def upsert_triplet(self, subj: str, rel: str, obj: str) -> None:
    """Add triplet."""
    query = f"""
        MERGE (n1:`{self.node_label}` {{id:$subj}})
        MERGE (n2:`{self.node_label}` {{id:$obj}})
        MERGE (n1)-[:`{rel.replace(" ", "_").upper()}`]->(n2)
    """
    self.query(query, {"subj": subj, "obj": obj})

delete #

delete(subj: str, rel: str, obj: str) -> None

Delete triplet.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
137
138
139
140
141
142
143
144
def delete(self, subj: str, rel: str, obj: str) -> None:
    """Delete triplet."""
    query = f"""
        MATCH (n1:`{self.node_label}`)-[r:`{rel}`]->(n2:`{self.node_label}`)
        WHERE n1.id = $subj AND n2.id = $obj
        DELETE r
    """
    self.query(query, {"subj": subj, "obj": obj})

refresh_schema #

refresh_schema() -> None

Refreshes the Memgraph graph schema information.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def refresh_schema(self) -> None:
    """
    Refreshes the Memgraph graph schema information.
    """
    node_properties = self.query(node_properties_query)
    relationships_properties = self.query(rel_properties_query)
    relationships = self.query(rel_query)

    self.schema = f"""
    Node properties are the following:
    {node_properties}
    Relationship properties are the following:
    {relationships_properties}
    The relationships are the following:
    {relationships}
    """

get_schema #

get_schema(refresh: bool = False) -> str

Get the schema of the MemgraphGraph store.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/kg_base.py
163
164
165
166
167
168
169
def get_schema(self, refresh: bool = False) -> str:
    """Get the schema of the MemgraphGraph store."""
    if self.schema and not refresh:
        return self.schema
    self.refresh_schema()
    logger.debug(f"get_schema() schema:\n{self.schema}")
    return self.schema

MemgraphPropertyGraphStore #

Bases: PropertyGraphStore

Memgraph Property Graph Store.

This class implements a Memgraph property graph store.

Parameters:

Name Type Description Default
username str

The username for the Memgraph database.

required
password str

The password for the Memgraph database.

required
url str

The URL for the Memgraph database.

required
database Optional[str]

The name of the database to connect to. Defaults to "memgraph".

'memgraph'

Examples:

from llama_index.core.indices.property_graph import PropertyGraphIndex
from llama_index.graph_stores.memgraph import MemgraphPropertyGraphStore

# Create a MemgraphPropertyGraphStore instance
graph_store = MemgraphPropertyGraphStore(
    username="memgraph",
    password="password",
    url="bolt://localhost:7687",
    database="memgraph"
)

# Create the index
index = PropertyGraphIndex.from_documents(
    documents,
    property_graph_store=graph_store,
)

# Close the Memgraph connection explicitly.
graph_store.close()
Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/property_graph.py
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
class MemgraphPropertyGraphStore(PropertyGraphStore):
    r"""
    Memgraph Property Graph Store.

    This class implements a Memgraph property graph store.

    Args:
        username (str): The username for the Memgraph database.
        password (str): The password for the Memgraph database.
        url (str): The URL for the Memgraph database.
        database (Optional[str]): The name of the database to connect to. Defaults to "memgraph".

    Examples:
        ```python
        from llama_index.core.indices.property_graph import PropertyGraphIndex
        from llama_index.graph_stores.memgraph import MemgraphPropertyGraphStore

        # Create a MemgraphPropertyGraphStore instance
        graph_store = MemgraphPropertyGraphStore(
            username="memgraph",
            password="password",
            url="bolt://localhost:7687",
            database="memgraph"
        )

        # Create the index
        index = PropertyGraphIndex.from_documents(
            documents,
            property_graph_store=graph_store,
        )

        # Close the Memgraph connection explicitly.
        graph_store.close()
        ```
    """

    supports_structured_queries: bool = True
    text_to_cypher_template: PromptTemplate = DEFAULT_CYPHER_TEMPALTE

    def __init__(
        self,
        username: str,
        password: str,
        url: str,
        database: Optional[str] = "memgraph",
        refresh_schema: bool = True,
        sanitize_query_output: bool = True,
        enhanced_schema: bool = False,
        **neo4j_kwargs: Any,
    ) -> None:
        self.sanitize_query_output = sanitize_query_output
        self.enhanced_schema = enhanced_schema
        self._driver = neo4j.GraphDatabase.driver(
            url, auth=(username, password), **neo4j_kwargs
        )
        self._database = database
        self.structured_schema = {}
        if refresh_schema:
            self.refresh_schema()

        # Create index for faster imports and retrieval
        self.structured_query(f"""CREATE INDEX ON :{BASE_NODE_LABEL}(id);""")
        self.structured_query(f"""CREATE INDEX ON :{BASE_ENTITY_LABEL}(id);""")

    @property
    def client(self):
        return self._driver

    def close(self) -> None:
        self._driver.close()

    def refresh_schema(self) -> None:
        """Refresh the schema."""
        # Leave schema empty if db is empty
        if self.structured_query("MATCH (n) RETURN n LIMIT 1") == []:
            return

        node_query_results = self.structured_query(
            node_properties_query,
            param_map={
                "EXCLUDED_LABELS": [
                    *EXCLUDED_LABELS,
                    BASE_ENTITY_LABEL,
                    BASE_NODE_LABEL,
                ]
            },
        )
        node_properties = {}
        for el in node_query_results:
            if el["output"]["labels"] in [
                *EXCLUDED_LABELS,
                BASE_ENTITY_LABEL,
                BASE_NODE_LABEL,
            ]:
                continue

            label = el["output"]["labels"]
            properties = el["output"]["properties"]
            if label in node_properties:
                node_properties[label]["properties"].extend(
                    prop
                    for prop in properties
                    if prop not in node_properties[label]["properties"]
                )
            else:
                node_properties[label] = {"properties": properties}

        node_properties = [
            {"labels": label, **value} for label, value in node_properties.items()
        ]
        rels_query_result = self.structured_query(
            rel_properties_query, param_map={"EXCLUDED_LABELS": EXCLUDED_RELS}
        )
        rel_properties = (
            [
                el["output"]
                for el in rels_query_result
                if any(prop["property"] for prop in el["output"].get("properties", []))
            ]
            if rels_query_result
            else []
        )
        rel_objs_query_result = self.structured_query(
            rel_query,
            param_map={
                "EXCLUDED_LABELS": [
                    *EXCLUDED_LABELS,
                    BASE_ENTITY_LABEL,
                    BASE_NODE_LABEL,
                ]
            },
        )
        relationships = [
            el["output"]
            for el in rel_objs_query_result
            if rel_objs_query_result
            and el["output"]["start"]
            not in [*EXCLUDED_LABELS, BASE_ENTITY_LABEL, BASE_NODE_LABEL]
            and el["output"]["end"]
            not in [*EXCLUDED_LABELS, BASE_ENTITY_LABEL, BASE_NODE_LABEL]
        ]
        self.structured_schema = {
            "node_props": {el["labels"]: el["properties"] for el in node_properties},
            "rel_props": {el["type"]: el["properties"] for el in rel_properties},
            "relationships": relationships,
        }
        schema_nodes = self.structured_query(
            "MATCH (n) UNWIND labels(n) AS label RETURN label AS node, COUNT(n) AS count ORDER BY count DESC"
        )
        schema_rels = self.structured_query(
            "MATCH ()-[r]->() RETURN TYPE(r) AS relationship_type, COUNT(r) AS count"
        )
        schema_counts = [
            {
                "nodes": [
                    {"name": item["node"], "count": item["count"]}
                    for item in schema_nodes
                ],
                "relationships": [
                    {"name": item["relationship_type"], "count": item["count"]}
                    for item in schema_rels
                ],
            }
        ]
        # Update node info
        for node in schema_counts[0].get("nodes", []):
            # Skip bloom labels
            if node["name"] in EXCLUDED_LABELS:
                continue
            node_props = self.structured_schema["node_props"].get(node["name"])
            if not node_props:  # The node has no properties
                continue

            enhanced_cypher = self._enhanced_schema_cypher(
                node["name"], node_props, node["count"] < EXHAUSTIVE_SEARCH_LIMIT
            )
            output = self.structured_query(enhanced_cypher)
            enhanced_info = output[0]["output"]
            for prop in node_props:
                if prop["property"] in enhanced_info:
                    prop.update(enhanced_info[prop["property"]])

        # Update rel info
        for rel in schema_counts[0].get("relationships", []):
            if rel["name"] in EXCLUDED_RELS:
                continue
            rel_props = self.structured_schema["rel_props"].get(f":`{rel['name']}`")
            if not rel_props:  # The rel has no properties
                continue
            enhanced_cypher = self._enhanced_schema_cypher(
                rel["name"],
                rel_props,
                rel["count"] < EXHAUSTIVE_SEARCH_LIMIT,
                is_relationship=True,
            )
            try:
                enhanced_info = self.structured_query(enhanced_cypher)[0]["output"]
                for prop in rel_props:
                    if prop["property"] in enhanced_info:
                        prop.update(enhanced_info[prop["property"]])
            except neo4j.exceptions.ClientError:
                pass

    def upsert_nodes(self, nodes: List[LabelledNode]) -> None:
        # Lists to hold separated types
        entity_dicts: List[dict] = []
        chunk_dicts: List[dict] = []

        # Sort by type
        for item in nodes:
            if isinstance(item, EntityNode):
                entity_dicts.append({**item.dict(), "id": item.id})
            elif isinstance(item, ChunkNode):
                chunk_dicts.append({**item.dict(), "id": item.id})
            else:
                pass
        if chunk_dicts:
            for index in range(0, len(chunk_dicts), CHUNK_SIZE):
                chunked_params = chunk_dicts[index : index + CHUNK_SIZE]
                for param in chunked_params:
                    formatted_properties = ", ".join(
                        [
                            f"{key}: {value!r}"
                            for key, value in param["properties"].items()
                        ]
                    )
                    self.structured_query(
                        f"""
                        MERGE (c:{BASE_NODE_LABEL} {{id: '{param["id"]}'}})
                        SET c.`text` = '{param["text"]}', c:Chunk
                        WITH c
                        SET c += {{{formatted_properties}}}
                        RETURN count(*)
                        """
                    )
        if entity_dicts:
            for index in range(0, len(entity_dicts), CHUNK_SIZE):
                chunked_params = entity_dicts[index : index + CHUNK_SIZE]
                for param in chunked_params:
                    formatted_properties = ", ".join(
                        [
                            f"{key}: {value!r}"
                            for key, value in param["properties"].items()
                        ]
                    )
                    self.structured_query(
                        f"""
                        MERGE (e:{BASE_NODE_LABEL} {{id: '{param["id"]}'}})
                        SET e += {{{formatted_properties}}}
                        SET e.name = '{param["name"]}', e:`{BASE_ENTITY_LABEL}`
                        WITH e
                        SET e :{param["label"]}
                        """
                    )
                    triplet_source_id = param["properties"].get("triplet_source_id")
                    if triplet_source_id:
                        self.structured_query(
                            f"""
                            MERGE (e:{BASE_NODE_LABEL} {{id: '{param["id"]}'}})
                            MERGE (c:{BASE_NODE_LABEL} {{id: '{triplet_source_id}'}})
                            MERGE (e)<-[:MENTIONS]-(c)
                            """
                        )

    def upsert_relations(self, relations: List[Relation]) -> None:
        """Add relations."""
        params = [r.dict() for r in relations]
        for index in range(0, len(params), CHUNK_SIZE):
            chunked_params = params[index : index + CHUNK_SIZE]
            for param in chunked_params:
                formatted_properties = ", ".join(
                    [f"{key}: {value!r}" for key, value in param["properties"].items()]
                )

                self.structured_query(
                    f"""
                    MERGE (source: {BASE_NODE_LABEL} {{id: '{param["source_id"]}'}})
                    ON CREATE SET source:Chunk
                    MERGE (target: {BASE_NODE_LABEL} {{id: '{param["target_id"]}'}})
                    ON CREATE SET target:Chunk
                    WITH source, target
                    MERGE (source)-[r:{param["label"]}]->(target)
                    SET r += {{{formatted_properties}}}
                    RETURN count(*)
                    """
                )

    def get(
        self,
        properties: Optional[dict] = None,
        ids: Optional[List[str]] = None,
    ) -> List[LabelledNode]:
        """Get nodes."""
        cypher_statement = f"MATCH (e:{BASE_NODE_LABEL}) "

        params = {}
        cypher_statement += "WHERE e.id IS NOT NULL "

        if ids:
            cypher_statement += "AND e.id IN $ids "
            params["ids"] = ids

        if properties:
            prop_list = []
            for i, prop in enumerate(properties):
                prop_list.append(f"e.`{prop}` = $property_{i}")
                params[f"property_{i}"] = properties[prop]
            cypher_statement += " AND " + " AND ".join(prop_list)

        return_statement = """
            RETURN
            e.id AS name,
            CASE
                WHEN labels(e)[0] IN ['__Entity__', '__Node__'] THEN
                    CASE
                        WHEN size(labels(e)) > 2 THEN labels(e)[2]
                        WHEN size(labels(e)) > 1 THEN labels(e)[1]
                        ELSE NULL
                    END
                ELSE labels(e)[0]
            END AS type,
            properties(e) AS properties
        """
        cypher_statement += return_statement
        response = self.structured_query(cypher_statement, param_map=params)
        response = response if response else []

        nodes = []
        for record in response:
            if "text" in record["properties"] or record["type"] is None:
                text = record["properties"].pop("text", "")
                nodes.append(
                    ChunkNode(
                        id_=record["name"],
                        text=text,
                        properties=remove_empty_values(record["properties"]),
                    )
                )
            else:
                nodes.append(
                    EntityNode(
                        name=record["name"],
                        label=record["type"],
                        properties=remove_empty_values(record["properties"]),
                    )
                )

        return nodes

    def get_triplets(
        self,
        entity_names: Optional[List[str]] = None,
        relation_names: Optional[List[str]] = None,
        properties: Optional[dict] = None,
        ids: Optional[List[str]] = None,
    ) -> List[Triplet]:
        cypher_statement = f"MATCH (e:`{BASE_ENTITY_LABEL}`)-[r]->(t) "

        params = {}
        if entity_names or relation_names or properties or ids:
            cypher_statement += "WHERE "

        if entity_names:
            cypher_statement += "e.name in $entity_names "
            params["entity_names"] = entity_names

        if relation_names and entity_names:
            cypher_statement += f"AND "

        if relation_names:
            cypher_statement += "type(r) in $relation_names "
            params[f"relation_names"] = relation_names

        if ids:
            cypher_statement += "e.id in $ids "
            params["ids"] = ids

        if properties:
            prop_list = []
            for i, prop in enumerate(properties):
                prop_list.append(f"e.`{prop}` = $property_{i}")
                params[f"property_{i}"] = properties[prop]
            cypher_statement += " AND ".join(prop_list)

        if not (entity_names or properties or relation_names or ids):
            return_statement = """
                WHERE NOT ANY(label IN labels(e) WHERE label = 'Chunk')
                RETURN type(r) as type, properties(r) as rel_prop, e.id as source_id,
                CASE
                    WHEN labels(e)[0] IN ['__Entity__', '__Node__'] THEN
                        CASE
                            WHEN size(labels(e)) > 2 THEN labels(e)[2]
                            WHEN size(labels(e)) > 1 THEN labels(e)[1]
                            ELSE NULL
                        END
                    ELSE labels(e)[0]
                END AS source_type,
                properties(e) AS source_properties,
                t.id as target_id,
                CASE
                    WHEN labels(t)[0] IN ['__Entity__', '__Node__'] THEN
                        CASE
                            WHEN size(labels(t)) > 2 THEN labels(t)[2]
                            WHEN size(labels(t)) > 1 THEN labels(t)[1]
                            ELSE NULL
                        END
                    ELSE labels(t)[0]
                END AS target_type, properties(t) AS target_properties LIMIT 100;
            """
        else:
            return_statement = """
            AND NOT ANY(label IN labels(e) WHERE label = 'Chunk')
                RETURN type(r) as type, properties(r) as rel_prop, e.id as source_id,
                CASE
                    WHEN labels(e)[0] IN ['__Entity__', '__Node__'] THEN
                        CASE
                            WHEN size(labels(e)) > 2 THEN labels(e)[2]
                            WHEN size(labels(e)) > 1 THEN labels(e)[1]
                            ELSE NULL
                        END
                    ELSE labels(e)[0]
                END AS source_type,
                properties(e) AS source_properties,
                t.id as target_id,
                CASE
                    WHEN labels(t)[0] IN ['__Entity__', '__Node__'] THEN
                        CASE
                            WHEN size(labels(t)) > 2 THEN labels(t)[2]
                            WHEN size(labels(t)) > 1 THEN labels(t)[1]
                            ELSE NULL
                        END
                    ELSE labels(t)[0]
                END AS target_type, properties(t) AS target_properties LIMIT 100;
            """

        cypher_statement += return_statement
        data = self.structured_query(cypher_statement, param_map=params)
        data = data if data else []

        triplets = []
        for record in data:
            source = EntityNode(
                name=record["source_id"],
                label=record["source_type"],
                properties=remove_empty_values(record["source_properties"]),
            )
            target = EntityNode(
                name=record["target_id"],
                label=record["target_type"],
                properties=remove_empty_values(record["target_properties"]),
            )
            rel = Relation(
                source_id=record["source_id"],
                target_id=record["target_id"],
                label=record["type"],
                properties=remove_empty_values(record["rel_prop"]),
            )
            triplets.append([source, rel, target])
        return triplets

    def get_rel_map(
        self,
        graph_nodes: List[LabelledNode],
        depth: int = 2,
        limit: int = 30,
        ignore_rels: Optional[List[str]] = None,
    ) -> List[Triplet]:
        """Get depth-aware rel map."""
        triples = []

        ids = [node.id for node in graph_nodes]
        response = self.structured_query(
            f"""
            WITH $ids AS id_list
            UNWIND range(0, size(id_list) - 1) AS idx
            MATCH (e:__Node__)
            WHERE e.id = id_list[idx]
            MATCH p=(e)-[r*1..{depth}]-(other)
            WHERE ALL(rel in relationships(p) WHERE type(rel) <> 'MENTIONS')
            UNWIND relationships(p) AS rel
            WITH DISTINCT rel, idx
            WITH startNode(rel) AS source,
                type(rel) AS type,
                rel{{.*}} AS rel_properties,
                endNode(rel) AS endNode,
                idx
            LIMIT toInteger($limit)
            RETURN source.id AS source_id,
                CASE
                    WHEN labels(source)[0] IN ['__Entity__', '__Node__'] THEN
                        CASE
                            WHEN size(labels(source)) > 2 THEN labels(source)[2]
                            WHEN size(labels(source)) > 1 THEN labels(source)[1]
                            ELSE NULL
                        END
                    ELSE labels(source)[0]
                END AS source_type,
                properties(source) AS source_properties,
                type,
                rel_properties,
                endNode.id AS target_id,
                CASE
                    WHEN labels(endNode)[0] IN ['__Entity__', '__Node__'] THEN
                        CASE
                            WHEN size(labels(endNode)) > 2 THEN labels(endNode)[2]
                            WHEN size(labels(endNode)) > 1 THEN labels(endNode)[1] ELSE NULL
                        END
                    ELSE labels(endNode)[0]
                END AS target_type,
                properties(endNode) AS target_properties,
                idx
            ORDER BY idx
            LIMIT toInteger($limit)
            """,
            param_map={"ids": ids, "limit": limit},
        )
        response = response if response else []

        ignore_rels = ignore_rels or []
        for record in response:
            if record["type"] in ignore_rels:
                continue

            source = EntityNode(
                name=record["source_id"],
                label=record["source_type"],
                properties=remove_empty_values(record["source_properties"]),
            )
            target = EntityNode(
                name=record["target_id"],
                label=record["target_type"],
                properties=remove_empty_values(record["target_properties"]),
            )
            rel = Relation(
                source_id=record["source_id"],
                target_id=record["target_id"],
                label=record["type"],
                properties=remove_empty_values(record["rel_properties"]),
            )
            triples.append([source, rel, target])

        return triples

    def structured_query(
        self, query: str, param_map: Optional[Dict[str, Any]] = None
    ) -> Any:
        param_map = param_map or {}

        with self._driver.session(database=self._database) as session:
            result = session.run(query, param_map)
            full_result = [d.data() for d in result]

        if self.sanitize_query_output:
            return [value_sanitize(el) for el in full_result]
        return full_result

    def vector_query(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> Tuple[List[LabelledNode], List[float]]:
        raise NotImplementedError(
            "Vector query is not currently implemented for MemgraphPropertyGraphStore."
        )

    def delete(
        self,
        entity_names: Optional[List[str]] = None,
        relation_names: Optional[List[str]] = None,
        properties: Optional[dict] = None,
        ids: Optional[List[str]] = None,
    ) -> None:
        """Delete matching data."""
        if entity_names:
            self.structured_query(
                "MATCH (n) WHERE n.name IN $entity_names DETACH DELETE n",
                param_map={"entity_names": entity_names},
            )
        if ids:
            self.structured_query(
                "MATCH (n) WHERE n.id IN $ids DETACH DELETE n",
                param_map={"ids": ids},
            )
        if relation_names:
            for rel in relation_names:
                self.structured_query(f"MATCH ()-[r:`{rel}`]->() DELETE r")

        if properties:
            cypher = "MATCH (e) WHERE "
            prop_list = []
            params = {}
            for i, prop in enumerate(properties):
                prop_list.append(f"e.`{prop}` = $property_{i}")
                params[f"property_{i}"] = properties[prop]
            cypher += " AND ".join(prop_list)
            self.structured_query(cypher + " DETACH DELETE e", param_map=params)

    def _enhanced_schema_cypher(
        self,
        label_or_type: str,
        properties: List[Dict[str, Any]],
        exhaustive: bool,
        is_relationship: bool = False,
    ) -> str:
        if is_relationship:
            match_clause = f"MATCH ()-[n:`{label_or_type}`]->()"
        else:
            match_clause = f"MATCH (n:`{label_or_type}`)"

        with_clauses = []
        return_clauses = []
        output_dict = {}
        if exhaustive:
            for prop in properties:
                if prop["property"]:
                    prop_name = prop["property"]
                else:
                    prop_name = None
                if prop["type"]:
                    prop_type = prop["type"]
                else:
                    prop_type = None
                if prop_type == "String":
                    with_clauses.append(
                        f"collect(distinct substring(toString(n.`{prop_name}`), 0, 50)) "
                        f"AS `{prop_name}_values`"
                    )
                    return_clauses.append(
                        f"values:`{prop_name}_values`[..{DISTINCT_VALUE_LIMIT}],"
                        f" distinct_count: size(`{prop_name}_values`)"
                    )
                elif prop_type in [
                    "Int",
                    "Double",
                    "Date",
                    "LocalTime",
                    "LocalDateTime",
                ]:
                    with_clauses.append(f"min(n.`{prop_name}`) AS `{prop_name}_min`")
                    with_clauses.append(f"max(n.`{prop_name}`) AS `{prop_name}_max`")
                    with_clauses.append(
                        f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
                    )
                    return_clauses.append(
                        f"min: toString(`{prop_name}_min`), "
                        f"max: toString(`{prop_name}_max`), "
                        f"distinct_count: `{prop_name}_distinct`"
                    )
                elif prop_type in ["List", "List[Any]"]:
                    with_clauses.append(
                        f"min(size(n.`{prop_name}`)) AS `{prop_name}_size_min`, "
                        f"max(size(n.`{prop_name}`)) AS `{prop_name}_size_max`"
                    )
                    return_clauses.append(
                        f"min_size: `{prop_name}_size_min`, "
                        f"max_size: `{prop_name}_size_max`"
                    )
                elif prop_type in ["Bool", "Duration"]:
                    continue
                if return_clauses:
                    output_dict[prop_name] = "{" + return_clauses.pop() + "}"
                else:
                    output_dict[prop_name] = None
        else:
            # Just sample 5 random nodes
            match_clause += " WITH n LIMIT 5"
            for prop in properties:
                prop_name = prop["property"]
                prop_type = prop["type"]

                # Check if indexed property, we can still do exhaustive
                prop_index = [
                    el
                    for el in self.structured_schema["metadata"]["index"]
                    if el["label"] == label_or_type
                    and el["properties"] == [prop_name]
                    and el["type"] == "RANGE"
                ]
                if prop_type == "String":
                    if (
                        prop_index
                        and prop_index[0].get("size") > 0
                        and prop_index[0].get("distinctValues") <= DISTINCT_VALUE_LIMIT
                    ):
                        distinct_values_query = f"""
                            MATCH (n:{label_or_type})
                            RETURN DISTINCT n.`{prop_name}` AS value
                            LIMIT {DISTINCT_VALUE_LIMIT}
                        """
                        distinct_values = self.query(distinct_values_query)

                        # Extract values from the result set
                        distinct_values = [
                            record["value"] for record in distinct_values
                        ]

                        return_clauses.append(
                            f"values: {distinct_values},"
                            f" distinct_count: {len(distinct_values)}"
                        )
                    else:
                        with_clauses.append(
                            f"collect(distinct substring(n.`{prop_name}`, 0, 50)) "
                            f"AS `{prop_name}_values`"
                        )
                        return_clauses.append(f"values: `{prop_name}_values`")
                elif prop_type in [
                    "Int",
                    "Double",
                    "Float",
                    "Date",
                    "LocalTime",
                    "LocalDateTime",
                ]:
                    if not prop_index:
                        with_clauses.append(
                            f"collect(distinct toString(n.`{prop_name}`)) "
                            f"AS `{prop_name}_values`"
                        )
                        return_clauses.append(f"values: `{prop_name}_values`")
                    else:
                        with_clauses.append(
                            f"min(n.`{prop_name}`) AS `{prop_name}_min`"
                        )
                        with_clauses.append(
                            f"max(n.`{prop_name}`) AS `{prop_name}_max`"
                        )
                        with_clauses.append(
                            f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
                        )
                        return_clauses.append(
                            f"min: toString(`{prop_name}_min`), "
                            f"max: toString(`{prop_name}_max`), "
                            f"distinct_count: `{prop_name}_distinct`"
                        )

                elif prop_type in ["List", "List[Any]"]:
                    with_clauses.append(
                        f"min(size(n.`{prop_name}`)) AS `{prop_name}_size_min`, "
                        f"max(size(n.`{prop_name}`)) AS `{prop_name}_size_max`"
                    )
                    return_clauses.append(
                        f"min_size: `{prop_name}_size_min`, "
                        f"max_size: `{prop_name}_size_max`"
                    )
                elif prop_type in ["Bool", "Duration"]:
                    continue
                if return_clauses:
                    output_dict[prop_name] = "{" + return_clauses.pop() + "}"
                else:
                    output_dict[prop_name] = None

        with_clause = "WITH " + ",\n     ".join(with_clauses)
        return_clause = (
            "RETURN {"
            + ", ".join(f"`{k}`: {v}" for k, v in output_dict.items())
            + "} AS output"
        )
        # Combine all parts of the Cypher query
        return f"{match_clause}\n{with_clause}\n{return_clause}"

    def get_schema(self, refresh: bool = False) -> Any:
        if refresh:
            self.refresh_schema()

        return self.structured_schema

    def get_schema_str(self, refresh: bool = False) -> str:
        schema = self.get_schema(refresh=refresh)

        formatted_node_props = []
        formatted_rel_props = []

        if self.enhanced_schema:
            # Enhanced formatting for nodes
            for node_type, properties in schema["node_props"].items():
                formatted_node_props.append(f"- **{node_type}**")
                for prop in properties:
                    example = ""
                    if prop["type"] == "String" and prop.get("values"):
                        if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
                            example = (
                                f'Example: "{clean_string_values(prop["values"][0])}"'
                                if prop["values"]
                                else ""
                            )
                        else:  # If less than 10 possible values return all
                            example = (
                                (
                                    "Available options: "
                                    f'{[clean_string_values(el) for el in prop["values"]]}'
                                )
                                if prop["values"]
                                else ""
                            )

                    elif prop["type"] in [
                        "Int",
                        "Double",
                        "Float",
                        "Date",
                        "LocalTime",
                        "LocalDateTime",
                    ]:
                        if prop.get("min") is not None:
                            example = f'Min: {prop["min"]}, Max: {prop["max"]}'
                        else:
                            example = (
                                f'Example: "{prop["values"][0]}"'
                                if prop.get("values")
                                else ""
                            )
                    elif prop["type"] in ["List", "List[Any]"]:
                        # Skip embeddings
                        if not prop.get("min_size") or prop["min_size"] > LIST_LIMIT:
                            continue
                        example = f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
                    formatted_node_props.append(
                        f"  - `{prop['property']}`: {prop['type']} {example}"
                    )

            # Enhanced formatting for relationships
            for rel_type, properties in schema["rel_props"].items():
                formatted_rel_props.append(f"- **{rel_type}**")
                for prop in properties:
                    example = ""
                    if prop["type"] == "STRING":
                        if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
                            example = (
                                f'Example: "{clean_string_values(prop["values"][0])}"'
                                if prop.get("values")
                                else ""
                            )
                        else:  # If less than 10 possible values return all
                            example = (
                                (
                                    "Available options: "
                                    f'{[clean_string_values(el) for el in prop["values"]]}'
                                )
                                if prop.get("values")
                                else ""
                            )
                    elif prop["type"] in [
                        "Int",
                        "Double",
                        "Float",
                        "Date",
                        "LocalTime",
                        "LocalDateTime",
                    ]:
                        if prop.get("min"):  # If we have min/max
                            example = f'Min: {prop["min"]}, Max:  {prop["max"]}'
                        else:  # return a single value
                            example = (
                                f'Example: "{prop["values"][0]}"'
                                if prop.get("values")
                                else ""
                            )
                    elif prop["type"] == "List[Any]":
                        # Skip embeddings
                        if prop["min_size"] > LIST_LIMIT:
                            continue
                        example = f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
                    formatted_rel_props.append(
                        f"  - `{prop['property']}: {prop['type']}` {example}"
                    )
        else:
            # Format node properties
            for label, props in schema["node_props"].items():
                props_str = ", ".join(
                    [f"{prop['property']}: {prop['type']}" for prop in props]
                )
                formatted_node_props.append(f"{label} {{{props_str}}}")

            # Format relationship properties using structured_schema
            for type, props in schema["rel_props"].items():
                props_str = ", ".join(
                    [f"{prop['property']}: {prop['type']}" for prop in props]
                )
                formatted_rel_props.append(f"{type} {{{props_str}}}")

        # Format relationships
        formatted_rels = [
            f"(:{el['start']})-[:{el['type']}]->(:{el['end']})"
            for el in schema["relationships"]
        ]

        return "\n".join(
            [
                "Node properties:",
                "\n".join(formatted_node_props),
                "Relationship properties:",
                "\n".join(formatted_rel_props),
                "The relationships:",
                "\n".join(formatted_rels),
            ]
        )

refresh_schema #

refresh_schema() -> None

Refresh the schema.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/property_graph.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def refresh_schema(self) -> None:
    """Refresh the schema."""
    # Leave schema empty if db is empty
    if self.structured_query("MATCH (n) RETURN n LIMIT 1") == []:
        return

    node_query_results = self.structured_query(
        node_properties_query,
        param_map={
            "EXCLUDED_LABELS": [
                *EXCLUDED_LABELS,
                BASE_ENTITY_LABEL,
                BASE_NODE_LABEL,
            ]
        },
    )
    node_properties = {}
    for el in node_query_results:
        if el["output"]["labels"] in [
            *EXCLUDED_LABELS,
            BASE_ENTITY_LABEL,
            BASE_NODE_LABEL,
        ]:
            continue

        label = el["output"]["labels"]
        properties = el["output"]["properties"]
        if label in node_properties:
            node_properties[label]["properties"].extend(
                prop
                for prop in properties
                if prop not in node_properties[label]["properties"]
            )
        else:
            node_properties[label] = {"properties": properties}

    node_properties = [
        {"labels": label, **value} for label, value in node_properties.items()
    ]
    rels_query_result = self.structured_query(
        rel_properties_query, param_map={"EXCLUDED_LABELS": EXCLUDED_RELS}
    )
    rel_properties = (
        [
            el["output"]
            for el in rels_query_result
            if any(prop["property"] for prop in el["output"].get("properties", []))
        ]
        if rels_query_result
        else []
    )
    rel_objs_query_result = self.structured_query(
        rel_query,
        param_map={
            "EXCLUDED_LABELS": [
                *EXCLUDED_LABELS,
                BASE_ENTITY_LABEL,
                BASE_NODE_LABEL,
            ]
        },
    )
    relationships = [
        el["output"]
        for el in rel_objs_query_result
        if rel_objs_query_result
        and el["output"]["start"]
        not in [*EXCLUDED_LABELS, BASE_ENTITY_LABEL, BASE_NODE_LABEL]
        and el["output"]["end"]
        not in [*EXCLUDED_LABELS, BASE_ENTITY_LABEL, BASE_NODE_LABEL]
    ]
    self.structured_schema = {
        "node_props": {el["labels"]: el["properties"] for el in node_properties},
        "rel_props": {el["type"]: el["properties"] for el in rel_properties},
        "relationships": relationships,
    }
    schema_nodes = self.structured_query(
        "MATCH (n) UNWIND labels(n) AS label RETURN label AS node, COUNT(n) AS count ORDER BY count DESC"
    )
    schema_rels = self.structured_query(
        "MATCH ()-[r]->() RETURN TYPE(r) AS relationship_type, COUNT(r) AS count"
    )
    schema_counts = [
        {
            "nodes": [
                {"name": item["node"], "count": item["count"]}
                for item in schema_nodes
            ],
            "relationships": [
                {"name": item["relationship_type"], "count": item["count"]}
                for item in schema_rels
            ],
        }
    ]
    # Update node info
    for node in schema_counts[0].get("nodes", []):
        # Skip bloom labels
        if node["name"] in EXCLUDED_LABELS:
            continue
        node_props = self.structured_schema["node_props"].get(node["name"])
        if not node_props:  # The node has no properties
            continue

        enhanced_cypher = self._enhanced_schema_cypher(
            node["name"], node_props, node["count"] < EXHAUSTIVE_SEARCH_LIMIT
        )
        output = self.structured_query(enhanced_cypher)
        enhanced_info = output[0]["output"]
        for prop in node_props:
            if prop["property"] in enhanced_info:
                prop.update(enhanced_info[prop["property"]])

    # Update rel info
    for rel in schema_counts[0].get("relationships", []):
        if rel["name"] in EXCLUDED_RELS:
            continue
        rel_props = self.structured_schema["rel_props"].get(f":`{rel['name']}`")
        if not rel_props:  # The rel has no properties
            continue
        enhanced_cypher = self._enhanced_schema_cypher(
            rel["name"],
            rel_props,
            rel["count"] < EXHAUSTIVE_SEARCH_LIMIT,
            is_relationship=True,
        )
        try:
            enhanced_info = self.structured_query(enhanced_cypher)[0]["output"]
            for prop in rel_props:
                if prop["property"] in enhanced_info:
                    prop.update(enhanced_info[prop["property"]])
        except neo4j.exceptions.ClientError:
            pass

upsert_relations #

upsert_relations(relations: List[Relation]) -> None

Add relations.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/property_graph.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def upsert_relations(self, relations: List[Relation]) -> None:
    """Add relations."""
    params = [r.dict() for r in relations]
    for index in range(0, len(params), CHUNK_SIZE):
        chunked_params = params[index : index + CHUNK_SIZE]
        for param in chunked_params:
            formatted_properties = ", ".join(
                [f"{key}: {value!r}" for key, value in param["properties"].items()]
            )

            self.structured_query(
                f"""
                MERGE (source: {BASE_NODE_LABEL} {{id: '{param["source_id"]}'}})
                ON CREATE SET source:Chunk
                MERGE (target: {BASE_NODE_LABEL} {{id: '{param["target_id"]}'}})
                ON CREATE SET target:Chunk
                WITH source, target
                MERGE (source)-[r:{param["label"]}]->(target)
                SET r += {{{formatted_properties}}}
                RETURN count(*)
                """
            )

get #

get(properties: Optional[dict] = None, ids: Optional[List[str]] = None) -> List[LabelledNode]

Get nodes.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/property_graph.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
def get(
    self,
    properties: Optional[dict] = None,
    ids: Optional[List[str]] = None,
) -> List[LabelledNode]:
    """Get nodes."""
    cypher_statement = f"MATCH (e:{BASE_NODE_LABEL}) "

    params = {}
    cypher_statement += "WHERE e.id IS NOT NULL "

    if ids:
        cypher_statement += "AND e.id IN $ids "
        params["ids"] = ids

    if properties:
        prop_list = []
        for i, prop in enumerate(properties):
            prop_list.append(f"e.`{prop}` = $property_{i}")
            params[f"property_{i}"] = properties[prop]
        cypher_statement += " AND " + " AND ".join(prop_list)

    return_statement = """
        RETURN
        e.id AS name,
        CASE
            WHEN labels(e)[0] IN ['__Entity__', '__Node__'] THEN
                CASE
                    WHEN size(labels(e)) > 2 THEN labels(e)[2]
                    WHEN size(labels(e)) > 1 THEN labels(e)[1]
                    ELSE NULL
                END
            ELSE labels(e)[0]
        END AS type,
        properties(e) AS properties
    """
    cypher_statement += return_statement
    response = self.structured_query(cypher_statement, param_map=params)
    response = response if response else []

    nodes = []
    for record in response:
        if "text" in record["properties"] or record["type"] is None:
            text = record["properties"].pop("text", "")
            nodes.append(
                ChunkNode(
                    id_=record["name"],
                    text=text,
                    properties=remove_empty_values(record["properties"]),
                )
            )
        else:
            nodes.append(
                EntityNode(
                    name=record["name"],
                    label=record["type"],
                    properties=remove_empty_values(record["properties"]),
                )
            )

    return nodes

get_rel_map #

get_rel_map(graph_nodes: List[LabelledNode], depth: int = 2, limit: int = 30, ignore_rels: Optional[List[str]] = None) -> List[Triplet]

Get depth-aware rel map.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/property_graph.py
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
def get_rel_map(
    self,
    graph_nodes: List[LabelledNode],
    depth: int = 2,
    limit: int = 30,
    ignore_rels: Optional[List[str]] = None,
) -> List[Triplet]:
    """Get depth-aware rel map."""
    triples = []

    ids = [node.id for node in graph_nodes]
    response = self.structured_query(
        f"""
        WITH $ids AS id_list
        UNWIND range(0, size(id_list) - 1) AS idx
        MATCH (e:__Node__)
        WHERE e.id = id_list[idx]
        MATCH p=(e)-[r*1..{depth}]-(other)
        WHERE ALL(rel in relationships(p) WHERE type(rel) <> 'MENTIONS')
        UNWIND relationships(p) AS rel
        WITH DISTINCT rel, idx
        WITH startNode(rel) AS source,
            type(rel) AS type,
            rel{{.*}} AS rel_properties,
            endNode(rel) AS endNode,
            idx
        LIMIT toInteger($limit)
        RETURN source.id AS source_id,
            CASE
                WHEN labels(source)[0] IN ['__Entity__', '__Node__'] THEN
                    CASE
                        WHEN size(labels(source)) > 2 THEN labels(source)[2]
                        WHEN size(labels(source)) > 1 THEN labels(source)[1]
                        ELSE NULL
                    END
                ELSE labels(source)[0]
            END AS source_type,
            properties(source) AS source_properties,
            type,
            rel_properties,
            endNode.id AS target_id,
            CASE
                WHEN labels(endNode)[0] IN ['__Entity__', '__Node__'] THEN
                    CASE
                        WHEN size(labels(endNode)) > 2 THEN labels(endNode)[2]
                        WHEN size(labels(endNode)) > 1 THEN labels(endNode)[1] ELSE NULL
                    END
                ELSE labels(endNode)[0]
            END AS target_type,
            properties(endNode) AS target_properties,
            idx
        ORDER BY idx
        LIMIT toInteger($limit)
        """,
        param_map={"ids": ids, "limit": limit},
    )
    response = response if response else []

    ignore_rels = ignore_rels or []
    for record in response:
        if record["type"] in ignore_rels:
            continue

        source = EntityNode(
            name=record["source_id"],
            label=record["source_type"],
            properties=remove_empty_values(record["source_properties"]),
        )
        target = EntityNode(
            name=record["target_id"],
            label=record["target_type"],
            properties=remove_empty_values(record["target_properties"]),
        )
        rel = Relation(
            source_id=record["source_id"],
            target_id=record["target_id"],
            label=record["type"],
            properties=remove_empty_values(record["rel_properties"]),
        )
        triples.append([source, rel, target])

    return triples

delete #

delete(entity_names: Optional[List[str]] = None, relation_names: Optional[List[str]] = None, properties: Optional[dict] = None, ids: Optional[List[str]] = None) -> None

Delete matching data.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-memgraph/llama_index/graph_stores/memgraph/property_graph.py
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def delete(
    self,
    entity_names: Optional[List[str]] = None,
    relation_names: Optional[List[str]] = None,
    properties: Optional[dict] = None,
    ids: Optional[List[str]] = None,
) -> None:
    """Delete matching data."""
    if entity_names:
        self.structured_query(
            "MATCH (n) WHERE n.name IN $entity_names DETACH DELETE n",
            param_map={"entity_names": entity_names},
        )
    if ids:
        self.structured_query(
            "MATCH (n) WHERE n.id IN $ids DETACH DELETE n",
            param_map={"ids": ids},
        )
    if relation_names:
        for rel in relation_names:
            self.structured_query(f"MATCH ()-[r:`{rel}`]->() DELETE r")

    if properties:
        cypher = "MATCH (e) WHERE "
        prop_list = []
        params = {}
        for i, prop in enumerate(properties):
            prop_list.append(f"e.`{prop}` = $property_{i}")
            params[f"property_{i}"] = properties[prop]
        cypher += " AND ".join(prop_list)
        self.structured_query(cypher + " DETACH DELETE e", param_map=params)