Skip to content

Kuzu

KuzuGraphStore #

Bases: GraphStore

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
class KuzuGraphStore(GraphStore):
    def __init__(
        self,
        database: Any,
        node_table_name: str = "entity",
        rel_table_name: str = "links",
        **kwargs: Any,
    ) -> None:
        self.database = database
        self.connection = kuzu.Connection(database)
        self.node_table_name = node_table_name
        self.rel_table_name = rel_table_name
        self.init_schema()

    def init_schema(self) -> None:
        """Initialize schema if the tables do not exist."""
        node_tables = self.connection._get_node_table_names()
        if self.node_table_name not in node_tables:
            self.connection.execute(
                "CREATE NODE TABLE %s (ID STRING, PRIMARY KEY(ID))"
                % self.node_table_name
            )
        rel_tables = self.connection._get_rel_table_names()
        rel_tables = [rel_table["name"] for rel_table in rel_tables]
        if self.rel_table_name not in rel_tables:
            self.connection.execute(
                "CREATE REL TABLE {} (FROM {} TO {}, predicate STRING)".format(
                    self.rel_table_name, self.node_table_name, self.node_table_name
                )
            )

    @property
    def client(self) -> Any:
        return self.connection

    def get(self, subj: str) -> List[List[str]]:
        """Get triplets."""
        query = """
            MATCH (n1:%s)-[r:%s]->(n2:%s)
            WHERE n1.ID = $subj
            RETURN r.predicate, n2.ID;
        """
        prepared_statement = self.connection.prepare(
            query % (self.node_table_name, self.rel_table_name, self.node_table_name)
        )
        query_result = self.connection.execute(prepared_statement, {"subj": subj})
        retval = []
        while query_result.has_next():
            row = query_result.get_next()
            retval.append([row[0], row[1]])
        return retval

    def get_rel_map(
        self, subjs: Optional[List[str]] = None, depth: int = 2, limit: int = 30
    ) -> Dict[str, List[List[str]]]:
        """Get depth-aware rel map."""
        rel_wildcard = "r:%s*1..%d" % (self.rel_table_name, depth)
        match_clause = "MATCH (n1:{})-[{}]->(n2:{})".format(
            self.node_table_name,
            rel_wildcard,
            self.node_table_name,
        )
        return_clause = "RETURN n1, r, n2 LIMIT %d" % limit
        params = []
        if subjs is not None:
            for i, curr_subj in enumerate(subjs):
                if i == 0:
                    where_clause = "WHERE n1.ID = $%d" % i
                else:
                    where_clause += " OR n1.ID = $%d" % i
                params.append((str(i), curr_subj))
        else:
            where_clause = ""
        query = f"{match_clause} {where_clause} {return_clause}"
        prepared_statement = self.connection.prepare(query)
        if subjs is not None:
            query_result = self.connection.execute(prepared_statement, dict(params))
        else:
            query_result = self.connection.execute(prepared_statement)
        retval: Dict[str, List[List[str]]] = {}
        while query_result.has_next():
            row = query_result.get_next()
            curr_path = []
            subj = row[0]
            recursive_rel = row[1]
            obj = row[2]
            nodes_map = {}
            nodes_map[(subj["_id"]["table"], subj["_id"]["offset"])] = subj["ID"]
            nodes_map[(obj["_id"]["table"], obj["_id"]["offset"])] = obj["ID"]
            for node in recursive_rel["_nodes"]:
                nodes_map[(node["_id"]["table"], node["_id"]["offset"])] = node["ID"]
            for rel in recursive_rel["_rels"]:
                predicate = rel["predicate"]
                curr_subj_id = nodes_map[(rel["_src"]["table"], rel["_src"]["offset"])]
                curr_path.append(curr_subj_id)
                curr_path.append(predicate)
            # Add the last node
            curr_path.append(obj["ID"])
            if subj["ID"] not in retval:
                retval[subj["ID"]] = []
            retval[subj["ID"]].append(curr_path)
        return retval

    def upsert_triplet(self, subj: str, rel: str, obj: str) -> None:
        """Add triplet."""

        def check_entity_exists(connection: Any, entity: str) -> bool:
            is_exists_result = connection.execute(
                "MATCH (n:%s) WHERE n.ID = $entity RETURN n.ID" % self.node_table_name,
                {"entity": entity},
            )
            return is_exists_result.has_next()

        def create_entity(connection: Any, entity: str) -> None:
            connection.execute(
                "CREATE (n:%s {ID: $entity})" % self.node_table_name,
                {"entity": entity},
            )

        def check_rel_exists(connection: Any, subj: str, obj: str, rel: str) -> bool:
            is_exists_result = connection.execute(
                (
                    "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.ID = $subj AND n2.ID = "
                    "$obj AND r.predicate = $pred RETURN r.predicate"
                ).format(
                    self.node_table_name, self.rel_table_name, self.node_table_name
                ),
                {"subj": subj, "obj": obj, "pred": rel},
            )
            return is_exists_result.has_next()

        def create_rel(connection: Any, subj: str, obj: str, rel: str) -> None:
            connection.execute(
                (
                    "MATCH (n1:{}), (n2:{}) WHERE n1.ID = $subj AND n2.ID = $obj "
                    "CREATE (n1)-[r:{} {{predicate: $pred}}]->(n2)"
                ).format(
                    self.node_table_name, self.node_table_name, self.rel_table_name
                ),
                {"subj": subj, "obj": obj, "pred": rel},
            )

        is_subj_exists = check_entity_exists(self.connection, subj)
        is_obj_exists = check_entity_exists(self.connection, obj)

        if not is_subj_exists:
            create_entity(self.connection, subj)
        if not is_obj_exists:
            create_entity(self.connection, obj)

        if is_subj_exists and is_obj_exists:
            is_rel_exists = check_rel_exists(self.connection, subj, obj, rel)
            if is_rel_exists:
                return

        create_rel(self.connection, subj, obj, rel)

    def delete(self, subj: str, rel: str, obj: str) -> None:
        """Delete triplet."""

        def delete_rel(connection: Any, subj: str, obj: str, rel: str) -> None:
            connection.execute(
                (
                    "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.ID = $subj AND n2.ID"
                    " = $obj AND r.predicate = $pred DELETE r"
                ).format(
                    self.node_table_name, self.rel_table_name, self.node_table_name
                ),
                {"subj": subj, "obj": obj, "pred": rel},
            )

        def delete_entity(connection: Any, entity: str) -> None:
            connection.execute(
                "MATCH (n:%s) WHERE n.ID = $entity DELETE n" % self.node_table_name,
                {"entity": entity},
            )

        def check_edges(connection: Any, entity: str) -> bool:
            is_exists_result = connection.execute(
                "MATCH (n1:{})-[r:{}]-(n2:{}) WHERE n2.ID = $entity RETURN r.predicate".format(
                    self.node_table_name, self.rel_table_name, self.node_table_name
                ),
                {"entity": entity},
            )
            return is_exists_result.has_next()

        delete_rel(self.connection, subj, obj, rel)
        if not check_edges(self.connection, subj):
            delete_entity(self.connection, subj)
        if not check_edges(self.connection, obj):
            delete_entity(self.connection, obj)

    @classmethod
    def from_persist_dir(
        cls,
        persist_dir: str,
        node_table_name: str = "entity",
        rel_table_name: str = "links",
    ) -> "KuzuGraphStore":
        """Load from persist dir."""
        database = kuzu.Database(persist_dir)
        return cls(database, node_table_name, rel_table_name)

    @classmethod
    def from_dict(cls, config_dict: Dict[str, Any]) -> "KuzuGraphStore":
        """
        Initialize graph store from configuration dictionary.

        Args:
            config_dict: Configuration dictionary.

        Returns:
            Graph store.

        """
        return cls(**config_dict)

init_schema #

init_schema() -> None

Initialize schema if the tables do not exist.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def init_schema(self) -> None:
    """Initialize schema if the tables do not exist."""
    node_tables = self.connection._get_node_table_names()
    if self.node_table_name not in node_tables:
        self.connection.execute(
            "CREATE NODE TABLE %s (ID STRING, PRIMARY KEY(ID))"
            % self.node_table_name
        )
    rel_tables = self.connection._get_rel_table_names()
    rel_tables = [rel_table["name"] for rel_table in rel_tables]
    if self.rel_table_name not in rel_tables:
        self.connection.execute(
            "CREATE REL TABLE {} (FROM {} TO {}, predicate STRING)".format(
                self.rel_table_name, self.node_table_name, self.node_table_name
            )
        )

get #

get(subj: str) -> List[List[str]]

Get triplets.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def get(self, subj: str) -> List[List[str]]:
    """Get triplets."""
    query = """
        MATCH (n1:%s)-[r:%s]->(n2:%s)
        WHERE n1.ID = $subj
        RETURN r.predicate, n2.ID;
    """
    prepared_statement = self.connection.prepare(
        query % (self.node_table_name, self.rel_table_name, self.node_table_name)
    )
    query_result = self.connection.execute(prepared_statement, {"subj": subj})
    retval = []
    while query_result.has_next():
        row = query_result.get_next()
        retval.append([row[0], row[1]])
    return retval

get_rel_map #

get_rel_map(subjs: Optional[List[str]] = None, depth: int = 2, limit: int = 30) -> Dict[str, List[List[str]]]

Get depth-aware rel map.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def get_rel_map(
    self, subjs: Optional[List[str]] = None, depth: int = 2, limit: int = 30
) -> Dict[str, List[List[str]]]:
    """Get depth-aware rel map."""
    rel_wildcard = "r:%s*1..%d" % (self.rel_table_name, depth)
    match_clause = "MATCH (n1:{})-[{}]->(n2:{})".format(
        self.node_table_name,
        rel_wildcard,
        self.node_table_name,
    )
    return_clause = "RETURN n1, r, n2 LIMIT %d" % limit
    params = []
    if subjs is not None:
        for i, curr_subj in enumerate(subjs):
            if i == 0:
                where_clause = "WHERE n1.ID = $%d" % i
            else:
                where_clause += " OR n1.ID = $%d" % i
            params.append((str(i), curr_subj))
    else:
        where_clause = ""
    query = f"{match_clause} {where_clause} {return_clause}"
    prepared_statement = self.connection.prepare(query)
    if subjs is not None:
        query_result = self.connection.execute(prepared_statement, dict(params))
    else:
        query_result = self.connection.execute(prepared_statement)
    retval: Dict[str, List[List[str]]] = {}
    while query_result.has_next():
        row = query_result.get_next()
        curr_path = []
        subj = row[0]
        recursive_rel = row[1]
        obj = row[2]
        nodes_map = {}
        nodes_map[(subj["_id"]["table"], subj["_id"]["offset"])] = subj["ID"]
        nodes_map[(obj["_id"]["table"], obj["_id"]["offset"])] = obj["ID"]
        for node in recursive_rel["_nodes"]:
            nodes_map[(node["_id"]["table"], node["_id"]["offset"])] = node["ID"]
        for rel in recursive_rel["_rels"]:
            predicate = rel["predicate"]
            curr_subj_id = nodes_map[(rel["_src"]["table"], rel["_src"]["offset"])]
            curr_path.append(curr_subj_id)
            curr_path.append(predicate)
        # Add the last node
        curr_path.append(obj["ID"])
        if subj["ID"] not in retval:
            retval[subj["ID"]] = []
        retval[subj["ID"]].append(curr_path)
    return retval

upsert_triplet #

upsert_triplet(subj: str, rel: str, obj: str) -> None

Add triplet.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def upsert_triplet(self, subj: str, rel: str, obj: str) -> None:
    """Add triplet."""

    def check_entity_exists(connection: Any, entity: str) -> bool:
        is_exists_result = connection.execute(
            "MATCH (n:%s) WHERE n.ID = $entity RETURN n.ID" % self.node_table_name,
            {"entity": entity},
        )
        return is_exists_result.has_next()

    def create_entity(connection: Any, entity: str) -> None:
        connection.execute(
            "CREATE (n:%s {ID: $entity})" % self.node_table_name,
            {"entity": entity},
        )

    def check_rel_exists(connection: Any, subj: str, obj: str, rel: str) -> bool:
        is_exists_result = connection.execute(
            (
                "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.ID = $subj AND n2.ID = "
                "$obj AND r.predicate = $pred RETURN r.predicate"
            ).format(
                self.node_table_name, self.rel_table_name, self.node_table_name
            ),
            {"subj": subj, "obj": obj, "pred": rel},
        )
        return is_exists_result.has_next()

    def create_rel(connection: Any, subj: str, obj: str, rel: str) -> None:
        connection.execute(
            (
                "MATCH (n1:{}), (n2:{}) WHERE n1.ID = $subj AND n2.ID = $obj "
                "CREATE (n1)-[r:{} {{predicate: $pred}}]->(n2)"
            ).format(
                self.node_table_name, self.node_table_name, self.rel_table_name
            ),
            {"subj": subj, "obj": obj, "pred": rel},
        )

    is_subj_exists = check_entity_exists(self.connection, subj)
    is_obj_exists = check_entity_exists(self.connection, obj)

    if not is_subj_exists:
        create_entity(self.connection, subj)
    if not is_obj_exists:
        create_entity(self.connection, obj)

    if is_subj_exists and is_obj_exists:
        is_rel_exists = check_rel_exists(self.connection, subj, obj, rel)
        if is_rel_exists:
            return

    create_rel(self.connection, subj, obj, rel)

delete #

delete(subj: str, rel: str, obj: str) -> None

Delete triplet.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def delete(self, subj: str, rel: str, obj: str) -> None:
    """Delete triplet."""

    def delete_rel(connection: Any, subj: str, obj: str, rel: str) -> None:
        connection.execute(
            (
                "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.ID = $subj AND n2.ID"
                " = $obj AND r.predicate = $pred DELETE r"
            ).format(
                self.node_table_name, self.rel_table_name, self.node_table_name
            ),
            {"subj": subj, "obj": obj, "pred": rel},
        )

    def delete_entity(connection: Any, entity: str) -> None:
        connection.execute(
            "MATCH (n:%s) WHERE n.ID = $entity DELETE n" % self.node_table_name,
            {"entity": entity},
        )

    def check_edges(connection: Any, entity: str) -> bool:
        is_exists_result = connection.execute(
            "MATCH (n1:{})-[r:{}]-(n2:{}) WHERE n2.ID = $entity RETURN r.predicate".format(
                self.node_table_name, self.rel_table_name, self.node_table_name
            ),
            {"entity": entity},
        )
        return is_exists_result.has_next()

    delete_rel(self.connection, subj, obj, rel)
    if not check_edges(self.connection, subj):
        delete_entity(self.connection, subj)
    if not check_edges(self.connection, obj):
        delete_entity(self.connection, obj)

from_persist_dir classmethod #

from_persist_dir(persist_dir: str, node_table_name: str = 'entity', rel_table_name: str = 'links') -> KuzuGraphStore

Load from persist dir.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
202
203
204
205
206
207
208
209
210
211
@classmethod
def from_persist_dir(
    cls,
    persist_dir: str,
    node_table_name: str = "entity",
    rel_table_name: str = "links",
) -> "KuzuGraphStore":
    """Load from persist dir."""
    database = kuzu.Database(persist_dir)
    return cls(database, node_table_name, rel_table_name)

from_dict classmethod #

from_dict(config_dict: Dict[str, Any]) -> KuzuGraphStore

Initialize graph store from configuration dictionary.

Parameters:

Name Type Description Default
config_dict Dict[str, Any]

Configuration dictionary.

required

Returns:

Type Description
KuzuGraphStore

Graph store.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/base.py
213
214
215
216
217
218
219
220
221
222
223
224
225
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> "KuzuGraphStore":
    """
    Initialize graph store from configuration dictionary.

    Args:
        config_dict: Configuration dictionary.

    Returns:
        Graph store.

    """
    return cls(**config_dict)

KuzuPropertyGraphStore #

Bases: PropertyGraphStore

Kùzu Property Graph Store.

This class implements a Kùzu property graph store.

Kùzu can be installed and used with this simple command:

pip install kuzu
Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
class KuzuPropertyGraphStore(PropertyGraphStore):
    """
    Kùzu Property Graph Store.

    This class implements a Kùzu property graph store.

    Kùzu can be installed and used with this simple command:

    ```
    pip install kuzu
    ```
    """

    def __init__(
        self,
        db: kuzu.Database,
        relationship_schema: Optional[List[Tuple[str, str, str]]] = None,
        has_structured_schema: Optional[bool] = False,
        sanitize_query_output: Optional[bool] = True,
        use_vector_index: bool = True,
        embed_model: Optional[Any] = None,
        embed_dimension: Optional[int] = None,
    ) -> None:
        self.db = db
        self.connection = kuzu.Connection(self.db)
        self.use_vector_index = use_vector_index

        # Initialize embedding dimension with auto-detection and fallback logic
        self.embed_dimension = self._initialize_embedding_dimension(
            embed_model, embed_dimension
        )

        # Install and load vector extension if using vector indexes
        if self.use_vector_index:
            try:
                self.connection.execute("INSTALL vector; LOAD vector;")
            except RuntimeError:
                # print("Warning: Skipping installing vector extension due to RuntimeError:", e)
                # print("Check that you can install Kuzu's vector extension by running: " \
                #       "`INSTALL vector; LOAD vector;` in a Kuzu CLI session."
                # )
                pass

        if has_structured_schema:
            if relationship_schema is None:
                raise ValueError(
                    "Please provide a relationship schema if structured_schema=True."
                )
            else:
                self.validate_relationship_schema(relationship_schema)
        else:
            # Use a generic schema with node types of 'Entity' if no schema is required
            relationship_schema = [("Entity", "LINKS", "Entity")]

        self.relationship_schema = relationship_schema
        self.entities = self.get_entities()
        self.has_structured_schema = has_structured_schema
        self.entities.extend(
            ["Chunk"]
        )  # Always include Chunk as an entity type, in all schemas
        self.sanitize_query_output = sanitize_query_output
        self.structured_schema = {}
        self.init_schema()

    def init_schema(self) -> None:
        """Initialize schema if the required tables do not exist."""
        utils.create_chunk_node_table(
            self.connection, embedding_dimension=self.embed_dimension
        )
        utils.create_entity_node_tables(self.connection, entities=self.entities)
        utils.create_relation_tables(
            self.connection,
            self.entities,
            relationship_schema=self.relationship_schema,
        )

    def validate_relationship_schema(self, relationship_schema: List[Triple]) -> None:
        # Check that validation schema is a list of tuples as required by Kùzu for relationships
        if not all(isinstance(item, tuple) for item in relationship_schema):
            raise ValueError(
                "Please specify the relationship schema as "
                "a list of tuples, for example: [('PERSON', 'IS_CEO_OF', 'ORGANIZATION')]"
            )

    @property
    def client(self) -> kuzu.Connection:
        return self.connection

    def get_entities(self) -> List[str]:
        return sorted(
            set(
                [rel[0] for rel in self.relationship_schema]
                + [rel[2] for rel in self.relationship_schema]
            )
        )

    def _initialize_embedding_dimension(
        self, embed_model: Optional[Any], embedding_dimension: Optional[int]
    ) -> Optional[int]:
        """
        Initialize embedding dimension using auto-detection and fallback logic.

        Args:
            embed_model: Optional embedding model for auto-detection
            embedding_dimension: Optional manual dimension specification

        Returns:
            Detected or specified embedding dimension, or None if unavailable

        """
        if embed_model is not None:
            # Try auto-detection first
            detected_dim = self._detect_embedding_dimension(embed_model)
            if detected_dim is not None:
                print(f"Auto-detected embedding dimension: {detected_dim}")
                return detected_dim
            elif embedding_dimension is not None:
                # Fall back to manual specification if auto-detection fails
                print(
                    f"Using manually specified embedding dimension: {embedding_dimension}"
                )
                return embedding_dimension
            else:
                # Neither auto-detection nor manual specification available
                print(
                    "Warning: Could not determine embedding dimension. Vector indexing may not work properly."
                )
                return None
        else:
            # No embed_model provided, use manual specification
            if embedding_dimension is not None:
                print(
                    f"Using manually specified embedding dimension: {embedding_dimension}"
                )
            return embedding_dimension

    def _detect_embedding_dimension(self, embed_model: Any) -> Optional[int]:
        """
        Detect embedding dimension by creating a test embedding.

        Args:
            embed_model: The embedding model instance

        Returns:
            Detected dimension or None if cannot be determined

        """
        try:
            test_embedding = embed_model.get_text_embedding("hello")
            if isinstance(test_embedding, list) and len(test_embedding) > 0:
                return len(test_embedding)
        except Exception:
            print(
                "Error: Could not detect embedding dimension from model. Please specify it manually via the `embedding_dimension` parameter."
            )  # noqa: E501

        return None

    def _create_vector_index(self, table_name: str) -> None:
        """Create a vector index for the embedding column of a table."""
        if not self.use_vector_index or table_name != "Chunk":
            return

        # Check if chunk_embedding_index already exists
        existing_indexes_result = self.connection.execute(
            "CALL SHOW_INDEXES() RETURN *"
        )
        for row in existing_indexes_result:
            if len(row) > 1 and row[1] == "chunk_embedding_index":
                return

        # Check if table has any data - Kuzu requires data before creating vector index
        count_result = self.connection.execute(
            f"MATCH (n:{table_name}) RETURN COUNT(n)"
        )
        if not any(int(row[0]) > 0 for row in count_result):
            return

        # Create vector index for Chunk table
        self.connection.execute("""
        CALL CREATE_VECTOR_INDEX(
            'Chunk',
            'chunk_embedding_index',
            'embedding',
            metric := 'cosine'
        )
        """)

    def _ensure_vector_indexes(self) -> None:
        """Ensure vector indexes are created for Chunk table only."""
        if not self.use_vector_index:
            return
        # Only create index for Chunk table since these have larger blobs of text
        # This makes the workflow easier to manage as a whole
        self._create_vector_index("Chunk")

    def refresh_vector_index(self) -> None:
        """Drop and recreate the vector index for Chunk table."""
        index_name = "chunk_embedding_index"
        # Drop existing index if it exists
        try:
            self.connection.execute(f"DROP INDEX {index_name}")
            print(f"Dropped vector index: {index_name}")
        except Exception:
            # Index may not exist, which is fine
            pass

        # Recreate the index
        self._create_vector_index("Chunk")
        print(f"Created vector index: {index_name}")

    def upsert_nodes(self, nodes: List[LabelledNode]) -> None:
        entity_list: List[EntityNode] = []
        chunk_list: List[ChunkNode] = []
        node_tables = self.connection._get_node_table_names()

        for item in nodes:
            if isinstance(item, EntityNode):
                entity_list.append(item)
            elif isinstance(item, ChunkNode):
                chunk_list.append(item)

        for chunk in chunk_list:
            upsert_chunk_node_query = """
                MERGE (c:Chunk {id: $id})
                  SET c.text = $text,
                      c.label = $label,
                      c.embedding = $embedding,
                      c.ref_doc_id = $ref_doc_id,
                      c.creation_date = date($creation_date),
                      c.last_modified_date = date($last_modified_date),
                      c.file_name = $file_name,
                      c.file_path = $file_path,
                      c.file_size = $file_size,
                      c.file_type = $file_type
                """

            self.connection.execute(
                upsert_chunk_node_query,
                parameters={
                    "id": chunk.id_,
                    "text": chunk.text.strip(),
                    "label": chunk.label,
                    "embedding": chunk.embedding,
                    "ref_doc_id": chunk.properties.get("ref_doc_id"),
                    "creation_date": chunk.properties.get("creation_date"),
                    "last_modified_date": chunk.properties.get("last_modified_date"),
                    "file_name": chunk.properties.get("file_name"),
                    "file_path": chunk.properties.get("file_path"),
                    "file_size": chunk.properties.get("file_size"),
                    "file_type": chunk.properties.get("file_type"),
                },
            )

        for entity in entity_list:
            entity_label = entity.label if entity.label in node_tables else "Entity"
            upsert_entity_node_query = f"""
                MERGE (e:{entity_label} {{id: $id}})
                SET e.label = $label,
                    e.name = $name,
                    e.creation_date = date($creation_date),
                    e.last_modified_date = date($last_modified_date),
                    e.file_name = $file_name,
                    e.file_path = $file_path,
                    e.file_size = $file_size,
                    e.file_type = $file_type,
                    e.triplet_source_id = $triplet_source_id
                """

            self.connection.execute(
                upsert_entity_node_query,
                parameters={
                    "id": entity.name,
                    "label": entity.label,
                    "name": entity.name,
                    "creation_date": entity.properties.get("creation_date"),
                    "last_modified_date": entity.properties.get("last_modified_date"),
                    "file_name": entity.properties.get("file_name"),
                    "file_path": entity.properties.get("file_path"),
                    "file_size": entity.properties.get("file_size"),
                    "file_type": entity.properties.get("file_type"),
                    "triplet_source_id": entity.properties.get("triplet_source_id"),
                },
            )
        # Create vector index for Chunk table if embeddings were inserted
        if self.use_vector_index and any(
            chunk.embedding is not None for chunk in chunk_list
        ):
            self._create_vector_index("Chunk")
        # Manual checkpoint
        self.connection.execute("CHECKPOINT;")

    def upsert_relations(self, relations: List[Relation]) -> None:
        for rel in relations:
            if self.has_structured_schema:
                src, rel_tbl_name, dst = utils.lookup_relation(
                    rel.label, self.relationship_schema
                )
            else:
                src, rel_tbl_name, dst = "Entity", "LINKS", "Entity"

            # Connect entities to each other
            self.connection.execute(
                f"""
                MATCH (a:{src} {{id: $source_id}}),
                      (b:{dst} {{id: $target_id}})
                MERGE (a)-[r:{rel_tbl_name} {{label: $label}}]->(b)
                    SET r.triplet_source_id = $triplet_source_id
                """,
                parameters={
                    "source_id": rel.source_id,
                    "target_id": rel.target_id,
                    "triplet_source_id": rel.properties.get("triplet_source_id"),
                    "label": rel.label,
                },
            )
            # Connect chunks to entities
            self.connection.execute(
                f"""
                MATCH (a:{src} {{id: $source_id}}),
                        (b:{dst} {{id: $target_id}}),
                        (c:Chunk {{id: $triplet_source_id}})
                MERGE (c)-[:MENTIONS]->(a)
                MERGE (c)-[:MENTIONS]->(b)
                """,
                parameters={
                    "source_id": rel.source_id,
                    "target_id": rel.target_id,
                    "triplet_source_id": rel.properties.get("triplet_source_id"),
                },
            )
        # Manual checkpoint
        self.connection.execute("CHECKPOINT;")

    def structured_query(
        self, query: str, param_map: Optional[Dict[str, Any]] = None
    ) -> Any:
        response = self.connection.execute(query, parameters=param_map)
        column_names = response.get_column_names()
        result = []
        for row in response:
            result.append(dict(zip(column_names, row)))

        if self.sanitize_query_output:
            return value_sanitize(result)
        self.connection.execute("CHECKPOINT;")

        return result

    def vector_query(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> Tuple[List[LabelledNode], List[float]]:
        """Perform vector similarity search on Chunk nodes."""
        self._ensure_vector_indexes()

        # Use Kuzu's vector index for similarity search
        result = self.connection.execute(
            """
            CALL QUERY_VECTOR_INDEX(
                'Chunk',
                'chunk_embedding_index',
                $query_embedding,
                $top_k
            )
            RETURN node.id as id, distance
            ORDER BY distance
            """,
            parameters={
                "query_embedding": query.query_embedding,
                "top_k": query.similarity_top_k,
            },
        )

        # Get matching chunk nodes and convert distances to similarities
        node_data = []

        for row in result:
            node_id, distance = row[0], row[1]

            # Fetch the chunk node
            chunk_result = self.structured_query(
                "MATCH (n:Chunk {id: $node_id}) RETURN n.*",
                param_map={"node_id": node_id},
            )

            if chunk_result:
                record = chunk_result[0]
                properties = {
                    k: v for k, v in record.items() if k not in ["n.id", "n.text"]
                }
                node = ChunkNode(
                    id_=record["n.id"],
                    text=record.get("n.text", ""),
                    properties=utils.remove_empty_values(properties),
                )
                # Convert distance to similarity (lower distance = higher similarity)
                similarity = 1.0 - distance
                node_data.append((node, similarity))

        # Sort by similarity in descending order
        node_data.sort(key=lambda x: x[1], reverse=True)

        # Separate nodes and similarities
        nodes = [item[0] for item in node_data]
        similarities = [item[1] for item in node_data]

        # Manual checkpoint
        self.connection.execute("CHECKPOINT;")

        return nodes, similarities

    def get(
        self,
        properties: Optional[dict] = None,
        ids: Optional[List[str]] = None,
    ) -> List[LabelledNode]:
        """Get nodes from the property graph store."""
        cypher_statement = "MATCH (e) "

        parameters = {}
        if ids:
            cypher_statement += "WHERE e.id in $ids "
            parameters["ids"] = ids

        return_statement = "RETURN e.*"
        cypher_statement += return_statement
        result = self.structured_query(cypher_statement, param_map=parameters)
        result = result if result else []

        nodes = []
        for record in result:
            # Text indicates a chunk node
            # None on the label indicates an implicit node, likely a chunk node
            if record.get("e.label") == "text_chunk":
                properties = {
                    k: v for k, v in record.items() if k not in ["e.id", "e.text"]
                }
                text = record.get("e.text")
                nodes.append(
                    ChunkNode(
                        id_=record["e.id"],
                        text=text,
                        properties=utils.remove_empty_values(properties),
                    )
                )
            else:
                properties = {
                    k: v for k, v in record.items() if k not in ["e.id", "e.name"]
                }
                name = record["e.name"] if record.get("e.name") else record["e.id"]
                label = record["e.label"] if record.get("e.label") else "Chunk"
                nodes.append(
                    EntityNode(
                        name=name,
                        label=label,
                        properties=utils.remove_empty_values(properties),
                    )
                )
        return nodes

    def get_triplets(
        self,
        entity_names: Optional[List[str]] = None,
        relation_names: Optional[List[str]] = None,
        ids: Optional[List[str]] = None,
    ) -> List[Triplet]:
        # Construct the Cypher query
        cypher_statement = "MATCH (e)-[r]->(t) "

        params = {}
        if entity_names or relation_names or ids:
            cypher_statement += "WHERE "

        if entity_names:
            cypher_statement += "e.name in $entity_names "
            params["entity_names"] = entity_names

        if relation_names and entity_names:
            cypher_statement += f"AND "
        if relation_names:
            cypher_statement += "r.label in $relation_names "
            params[f"relation_names"] = relation_names

        if ids:
            cypher_statement += "e.id in $ids "
            params["ids"] = ids

        # Avoid returning a massive list of triplets that represent a large portion of the graph
        # This uses the LIMIT constant defined at the top of the file
        if not (entity_names or relation_names or ids):
            return_statement = f"WHERE e.label <> 'text_chunk' RETURN * LIMIT {LIMIT};"
        else:
            return_statement = f"AND e.label <> 'text_chunk' RETURN * LIMIT {LIMIT};"

        cypher_statement += return_statement

        result = self.structured_query(cypher_statement, param_map=params)
        result = result if result else []

        triples = []
        for record in result:
            if record["e"]["_label"] == "Chunk":
                continue

            src_table = record["e"]["_id"]["table"]
            dst_table = record["t"]["_id"]["table"]
            id_map = {src_table: record["e"]["id"], dst_table: record["t"]["id"]}
            source = EntityNode(
                name=record["e"]["id"],
                label=record["e"]["_label"],
                properties=utils.get_filtered_props(record["e"], ["_id", "_label"]),
            )
            target = EntityNode(
                name=record["t"]["id"],
                label=record["t"]["_label"],
                properties=utils.get_filtered_props(record["t"], ["_id", "_label"]),
            )
            rel = Relation(
                source_id=id_map.get(record["r"]["_src"]["table"], "unknown"),
                target_id=id_map.get(record["r"]["_dst"]["table"], "unknown"),
                label=record["r"]["label"],
            )
            triples.append([source, rel, target])
        return triples

    def get_rel_map(
        self,
        graph_nodes: List[LabelledNode],
        depth: int = 2,
        limit: int = 30,
        ignore_rels: Optional[List[str]] = None,
    ) -> List[Triplet]:
        triples = []

        ids = [node.id for node in graph_nodes]
        if len(ids) > 0:
            # Run recursive query
            response = self.structured_query(
                f"""
                MATCH (e)
                WHERE e.id IN $ids
                MATCH (e)-[rel*1..{depth} (r, n | WHERE r.label <> "MENTIONS") ]->(other)
                RETURN *
                LIMIT {limit};
                """,
                param_map={"ids": ids},
            )
        else:
            response = self.structured_query(
                f"""
                MATCH (e)
                MATCH (e)-[rel*1..{depth} (r, n | WHERE r.label <> "MENTIONS") ]->(other)
                RETURN *
                LIMIT {limit};
                """
            )

        ignore_rels = ignore_rels or []
        for record in response:
            for item in record["rel"]["_rels"]:
                if item["label"] in ignore_rels:
                    continue

                src_table = item["_src"]["table"]
                dst_table = item["_src"]["table"]
                id_map = {
                    src_table: record["e"]["_id"],
                    dst_table: record["other"]["id"],
                }
                source = EntityNode(
                    name=record["e"]["name"],
                    label=record["e"]["_label"],
                    properties=utils.get_filtered_props(
                        record["e"], ["_id", "name", "_label"]
                    ),
                )
                target = EntityNode(
                    name=record["other"]["name"],
                    label=record["other"]["_label"],
                    properties=utils.get_filtered_props(
                        record["e"], ["_id", "name", "_label"]
                    ),
                )
                rel = Relation(
                    source_id=id_map.get(item["_src"]["table"], "unknown"),
                    target_id=id_map.get(item["_dst"]["table"], "unknown"),
                    label=item["label"],
                )
                triples.append([source, rel, target])

        return triples

    def delete(
        self,
        entity_names: Optional[List[str]] = None,
        relation_names: Optional[List[str]] = None,
        properties: Optional[dict] = None,
        ids: Optional[List[str]] = None,
    ) -> None:
        """Delete nodes and relationships from the property graph store."""
        if entity_names:
            self.structured_query(
                "MATCH (n) WHERE n.name IN $entity_names DETACH DELETE n",
                param_map={"entity_names": entity_names},
            )

        if ids:
            self.structured_query(
                "MATCH (n) WHERE n.id IN $ids DETACH DELETE n",
                param_map={"ids": ids},
            )

        if relation_names:
            for rel in relation_names:
                src, _, dst = utils.lookup_relation(rel, self.relationship_schema)
                self.structured_query(
                    f"""
                    MATCH (:{src})-[r {{label: $label}}]->(:{dst})
                    DELETE r
                    """,
                    param_map={"label": rel},
                )

        if properties:
            assert isinstance(properties, dict), (
                "`properties` should be a key-value mapping."
            )
            cypher = "MATCH (e) WHERE "
            prop_list = []
            params = {}
            for i, prop in enumerate(properties):
                prop_list.append(f"e.`{prop}` = $property_{i}")
                params[f"property_{i}"] = properties[prop]
            cypher += " AND ".join(prop_list)
            self.structured_query(cypher + " DETACH DELETE e", param_map=params)

    def get_schema(self) -> Any:
        """
        Returns a structured schema of the property graph store.

        The schema contains `node_props`, `rel_props`, and `relationships` keys and
        the associated metadata.
        Example output:
        {
            'node_props': {'Chunk': [{'property': 'id', 'type': 'STRING'},
                                    {'property': 'text', 'type': 'STRING'},
                                    {'property': 'label', 'type': 'STRING'},
                                    {'property': 'embedding', 'type': 'DOUBLE'},
                                    {'property': 'properties', 'type': 'STRING'},
                                    {'property': 'ref_doc_id', 'type': 'STRING'}],
                            'Entity': [{'property': 'id', 'type': 'STRING'},
                                    {'property': 'name', 'type': 'STRING'},
                                    {'property': 'label', 'type': 'STRING'},
                                    {'property': 'embedding', 'type': 'DOUBLE'},
                                    {'property': 'properties', 'type': 'STRING'}]},
            'rel_props': {'SOURCE': [{'property': 'label', 'type': 'STRING'}]},
            'relationships': [{'end': 'Chunk', 'start': 'Chunk', 'type': 'SOURCE'}]
        }
        """
        current_table_schema = {"node_props": {}, "rel_props": {}, "relationships": []}
        node_tables = self.connection._get_node_table_names()
        for table_name in node_tables:
            node_props = self.connection._get_node_property_names(table_name)
            current_table_schema["node_props"][table_name] = []
            for prop, attr in node_props.items():
                schema = {}
                schema["property"] = prop
                schema["type"] = attr["type"]
                current_table_schema["node_props"][table_name].append(schema)

        rel_tables = self.connection._get_rel_table_names()
        for i, table in enumerate(rel_tables):
            table_name = table["name"]
            prop_values = self.connection.execute(
                f"MATCH ()-[r:{table_name}]->() RETURN distinct r.label AS label;"
            )
            for row in prop_values:
                rel_label = row[0]
                src, dst = rel_tables[i]["src"], rel_tables[i]["dst"]
                current_table_schema["relationships"].append(
                    {"start": src, "type": rel_label, "end": dst}
                )
                current_table_schema["rel_props"][rel_label] = []
                table_details = self.connection.execute(
                    f"CALL TABLE_INFO('{table_name}') RETURN *;"
                )
                for props in table_details:
                    rel_props = {}
                    rel_props["property"] = props[1]
                    rel_props["type"] = props[2]
                    current_table_schema["rel_props"][rel_label].append(rel_props)

        self.structured_schema = current_table_schema

        return self.structured_schema

    def get_schema_str(self) -> str:
        schema = self.get_schema()

        formatted_node_props = []
        formatted_rel_props = []

        # Format node properties
        for label, props in schema["node_props"].items():
            props_str = ", ".join(
                [f"{prop['property']}: {prop['type']}" for prop in props]
            )
            formatted_node_props.append(f"{label} {{{props_str}}}")

        # Format relationship properties
        for type, props in schema["rel_props"].items():
            props_str = ", ".join(
                [f"{prop['property']}: {prop['type']}" for prop in props]
            )
            formatted_rel_props.append(f"{type} {{{props_str}}}")

        # Format relationships
        formatted_rels = [
            f"(:{rel['start']})-[:{rel['type']}]->(:{rel['end']})"
            for rel in schema["relationships"]
        ]

        return "\n".join(
            [
                "Node properties:",
                "\n".join(formatted_node_props),
                "Relationship properties:",
                "\n".join(formatted_rel_props),
                "The relationships:",
                "\n".join(formatted_rels),
            ]
        )

init_schema #

init_schema() -> None

Initialize schema if the required tables do not exist.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
86
87
88
89
90
91
92
93
94
95
96
def init_schema(self) -> None:
    """Initialize schema if the required tables do not exist."""
    utils.create_chunk_node_table(
        self.connection, embedding_dimension=self.embed_dimension
    )
    utils.create_entity_node_tables(self.connection, entities=self.entities)
    utils.create_relation_tables(
        self.connection,
        self.entities,
        relationship_schema=self.relationship_schema,
    )

refresh_vector_index #

refresh_vector_index() -> None

Drop and recreate the vector index for Chunk table.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def refresh_vector_index(self) -> None:
    """Drop and recreate the vector index for Chunk table."""
    index_name = "chunk_embedding_index"
    # Drop existing index if it exists
    try:
        self.connection.execute(f"DROP INDEX {index_name}")
        print(f"Dropped vector index: {index_name}")
    except Exception:
        # Index may not exist, which is fine
        pass

    # Recreate the index
    self._create_vector_index("Chunk")
    print(f"Created vector index: {index_name}")

vector_query #

vector_query(query: VectorStoreQuery, **kwargs: Any) -> Tuple[List[LabelledNode], List[float]]

Perform vector similarity search on Chunk nodes.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def vector_query(
    self, query: VectorStoreQuery, **kwargs: Any
) -> Tuple[List[LabelledNode], List[float]]:
    """Perform vector similarity search on Chunk nodes."""
    self._ensure_vector_indexes()

    # Use Kuzu's vector index for similarity search
    result = self.connection.execute(
        """
        CALL QUERY_VECTOR_INDEX(
            'Chunk',
            'chunk_embedding_index',
            $query_embedding,
            $top_k
        )
        RETURN node.id as id, distance
        ORDER BY distance
        """,
        parameters={
            "query_embedding": query.query_embedding,
            "top_k": query.similarity_top_k,
        },
    )

    # Get matching chunk nodes and convert distances to similarities
    node_data = []

    for row in result:
        node_id, distance = row[0], row[1]

        # Fetch the chunk node
        chunk_result = self.structured_query(
            "MATCH (n:Chunk {id: $node_id}) RETURN n.*",
            param_map={"node_id": node_id},
        )

        if chunk_result:
            record = chunk_result[0]
            properties = {
                k: v for k, v in record.items() if k not in ["n.id", "n.text"]
            }
            node = ChunkNode(
                id_=record["n.id"],
                text=record.get("n.text", ""),
                properties=utils.remove_empty_values(properties),
            )
            # Convert distance to similarity (lower distance = higher similarity)
            similarity = 1.0 - distance
            node_data.append((node, similarity))

    # Sort by similarity in descending order
    node_data.sort(key=lambda x: x[1], reverse=True)

    # Separate nodes and similarities
    nodes = [item[0] for item in node_data]
    similarities = [item[1] for item in node_data]

    # Manual checkpoint
    self.connection.execute("CHECKPOINT;")

    return nodes, similarities

get #

get(properties: Optional[dict] = None, ids: Optional[List[str]] = None) -> List[LabelledNode]

Get nodes from the property graph store.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
def get(
    self,
    properties: Optional[dict] = None,
    ids: Optional[List[str]] = None,
) -> List[LabelledNode]:
    """Get nodes from the property graph store."""
    cypher_statement = "MATCH (e) "

    parameters = {}
    if ids:
        cypher_statement += "WHERE e.id in $ids "
        parameters["ids"] = ids

    return_statement = "RETURN e.*"
    cypher_statement += return_statement
    result = self.structured_query(cypher_statement, param_map=parameters)
    result = result if result else []

    nodes = []
    for record in result:
        # Text indicates a chunk node
        # None on the label indicates an implicit node, likely a chunk node
        if record.get("e.label") == "text_chunk":
            properties = {
                k: v for k, v in record.items() if k not in ["e.id", "e.text"]
            }
            text = record.get("e.text")
            nodes.append(
                ChunkNode(
                    id_=record["e.id"],
                    text=text,
                    properties=utils.remove_empty_values(properties),
                )
            )
        else:
            properties = {
                k: v for k, v in record.items() if k not in ["e.id", "e.name"]
            }
            name = record["e.name"] if record.get("e.name") else record["e.id"]
            label = record["e.label"] if record.get("e.label") else "Chunk"
            nodes.append(
                EntityNode(
                    name=name,
                    label=label,
                    properties=utils.remove_empty_values(properties),
                )
            )
    return nodes

delete #

delete(entity_names: Optional[List[str]] = None, relation_names: Optional[List[str]] = None, properties: Optional[dict] = None, ids: Optional[List[str]] = None) -> None

Delete nodes and relationships from the property graph store.

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
def delete(
    self,
    entity_names: Optional[List[str]] = None,
    relation_names: Optional[List[str]] = None,
    properties: Optional[dict] = None,
    ids: Optional[List[str]] = None,
) -> None:
    """Delete nodes and relationships from the property graph store."""
    if entity_names:
        self.structured_query(
            "MATCH (n) WHERE n.name IN $entity_names DETACH DELETE n",
            param_map={"entity_names": entity_names},
        )

    if ids:
        self.structured_query(
            "MATCH (n) WHERE n.id IN $ids DETACH DELETE n",
            param_map={"ids": ids},
        )

    if relation_names:
        for rel in relation_names:
            src, _, dst = utils.lookup_relation(rel, self.relationship_schema)
            self.structured_query(
                f"""
                MATCH (:{src})-[r {{label: $label}}]->(:{dst})
                DELETE r
                """,
                param_map={"label": rel},
            )

    if properties:
        assert isinstance(properties, dict), (
            "`properties` should be a key-value mapping."
        )
        cypher = "MATCH (e) WHERE "
        prop_list = []
        params = {}
        for i, prop in enumerate(properties):
            prop_list.append(f"e.`{prop}` = $property_{i}")
            params[f"property_{i}"] = properties[prop]
        cypher += " AND ".join(prop_list)
        self.structured_query(cypher + " DETACH DELETE e", param_map=params)

get_schema #

get_schema() -> Any

Returns a structured schema of the property graph store.

The schema contains node_props, rel_props, and relationships keys and the associated metadata. Example output: { 'node_props': {'Chunk': [{'property': 'id', 'type': 'STRING'}, {'property': 'text', 'type': 'STRING'}, {'property': 'label', 'type': 'STRING'}, {'property': 'embedding', 'type': 'DOUBLE'}, {'property': 'properties', 'type': 'STRING'}, {'property': 'ref_doc_id', 'type': 'STRING'}], 'Entity': [{'property': 'id', 'type': 'STRING'}, {'property': 'name', 'type': 'STRING'}, {'property': 'label', 'type': 'STRING'}, {'property': 'embedding', 'type': 'DOUBLE'}, {'property': 'properties', 'type': 'STRING'}]}, 'rel_props': {'SOURCE': [{'property': 'label', 'type': 'STRING'}]}, 'relationships': [{'end': 'Chunk', 'start': 'Chunk', 'type': 'SOURCE'}] }

Source code in llama-index-integrations/graph_stores/llama-index-graph-stores-kuzu/llama_index/graph_stores/kuzu/kuzu_property_graph.py
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
def get_schema(self) -> Any:
    """
    Returns a structured schema of the property graph store.

    The schema contains `node_props`, `rel_props`, and `relationships` keys and
    the associated metadata.
    Example output:
    {
        'node_props': {'Chunk': [{'property': 'id', 'type': 'STRING'},
                                {'property': 'text', 'type': 'STRING'},
                                {'property': 'label', 'type': 'STRING'},
                                {'property': 'embedding', 'type': 'DOUBLE'},
                                {'property': 'properties', 'type': 'STRING'},
                                {'property': 'ref_doc_id', 'type': 'STRING'}],
                        'Entity': [{'property': 'id', 'type': 'STRING'},
                                {'property': 'name', 'type': 'STRING'},
                                {'property': 'label', 'type': 'STRING'},
                                {'property': 'embedding', 'type': 'DOUBLE'},
                                {'property': 'properties', 'type': 'STRING'}]},
        'rel_props': {'SOURCE': [{'property': 'label', 'type': 'STRING'}]},
        'relationships': [{'end': 'Chunk', 'start': 'Chunk', 'type': 'SOURCE'}]
    }
    """
    current_table_schema = {"node_props": {}, "rel_props": {}, "relationships": []}
    node_tables = self.connection._get_node_table_names()
    for table_name in node_tables:
        node_props = self.connection._get_node_property_names(table_name)
        current_table_schema["node_props"][table_name] = []
        for prop, attr in node_props.items():
            schema = {}
            schema["property"] = prop
            schema["type"] = attr["type"]
            current_table_schema["node_props"][table_name].append(schema)

    rel_tables = self.connection._get_rel_table_names()
    for i, table in enumerate(rel_tables):
        table_name = table["name"]
        prop_values = self.connection.execute(
            f"MATCH ()-[r:{table_name}]->() RETURN distinct r.label AS label;"
        )
        for row in prop_values:
            rel_label = row[0]
            src, dst = rel_tables[i]["src"], rel_tables[i]["dst"]
            current_table_schema["relationships"].append(
                {"start": src, "type": rel_label, "end": dst}
            )
            current_table_schema["rel_props"][rel_label] = []
            table_details = self.connection.execute(
                f"CALL TABLE_INFO('{table_name}') RETURN *;"
            )
            for props in table_details:
                rel_props = {}
                rel_props["property"] = props[1]
                rel_props["type"] = props[2]
                current_table_schema["rel_props"][rel_label].append(rel_props)

    self.structured_schema = current_table_schema

    return self.structured_schema