Skip to content

Index

Base retriever.

BaseRetriever #

Bases: ChainableMixin, PromptMixin, DispatcherSpanMixin

Base retriever.

Source code in llama-index-core/llama_index/core/base/base_retriever.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
class BaseRetriever(ChainableMixin, PromptMixin, DispatcherSpanMixin):
    """Base retriever."""

    def __init__(
        self,
        callback_manager: Optional[CallbackManager] = None,
        object_map: Optional[Dict] = None,
        objects: Optional[List[IndexNode]] = None,
        verbose: bool = False,
    ) -> None:
        self.callback_manager = callback_manager or CallbackManager()

        if objects is not None:
            object_map = {obj.index_id: obj.obj for obj in objects}

        self.object_map = object_map or {}
        self._verbose = verbose

    def _check_callback_manager(self) -> None:
        """Check callback manager."""
        if not hasattr(self, "callback_manager"):
            self.callback_manager = Settings.callback_manager

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {}

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt modules."""
        return {}

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""

    def _retrieve_from_object(
        self,
        obj: Any,
        query_bundle: QueryBundle,
        score: float,
    ) -> List[NodeWithScore]:
        """Retrieve nodes from object."""
        if self._verbose:
            print_text(
                f"Retrieving from object {obj.__class__.__name__} with query {query_bundle.query_str}\n",
                color="llama_pink",
            )
        if isinstance(obj, NodeWithScore):
            return [obj]
        elif isinstance(obj, BaseNode):
            return [NodeWithScore(node=obj, score=score)]
        elif isinstance(obj, BaseQueryEngine):
            response = obj.query(query_bundle)
            return [
                NodeWithScore(
                    node=TextNode(text=str(response), metadata=response.metadata or {}),
                    score=score,
                )
            ]
        elif isinstance(obj, BaseRetriever):
            return obj.retrieve(query_bundle)
        elif isinstance(obj, QueryComponent):
            component_keys = obj.input_keys.required_keys
            if len(component_keys) > 1:
                raise ValueError(
                    f"QueryComponent {obj} has more than one input key: {component_keys}"
                )
            elif len(component_keys) == 0:
                component_response = obj.run_component()
            else:
                kwargs = {next(iter(component_keys)): query_bundle.query_str}
                component_response = obj.run_component(**kwargs)

            result_output = str(next(iter(component_response.values())))
            return [NodeWithScore(node=TextNode(text=result_output), score=score)]
        else:
            raise ValueError(f"Object {obj} is not retrievable.")

    async def _aretrieve_from_object(
        self,
        obj: Any,
        query_bundle: QueryBundle,
        score: float,
    ) -> List[NodeWithScore]:
        """Retrieve nodes from object."""
        if isinstance(obj, NodeWithScore):
            return [obj]
        elif isinstance(obj, BaseNode):
            return [NodeWithScore(node=obj, score=score)]
        elif isinstance(obj, BaseQueryEngine):
            response = await obj.aquery(query_bundle)
            return [NodeWithScore(node=TextNode(text=str(response)), score=score)]
        elif isinstance(obj, BaseRetriever):
            return await obj.aretrieve(query_bundle)
        elif isinstance(obj, QueryComponent):
            component_keys = obj.input_keys.required_keys
            if len(component_keys) > 1:
                raise ValueError(
                    f"QueryComponent {obj} has more than one input key: {component_keys}"
                )
            elif len(component_keys) == 0:
                component_response = await obj.arun_component()
            else:
                kwargs = {next(iter(component_keys)): query_bundle.query_str}
                component_response = await obj.arun_component(**kwargs)

            result_output = str(next(iter(component_response.values())))
            return [NodeWithScore(node=TextNode(text=result_output), score=score)]
        else:
            raise ValueError(f"Object {obj} is not retrievable.")

    def _handle_recursive_retrieval(
        self, query_bundle: QueryBundle, nodes: List[NodeWithScore]
    ) -> List[NodeWithScore]:
        retrieved_nodes: List[NodeWithScore] = []
        for n in nodes:
            node = n.node
            score = n.score or 1.0
            if isinstance(node, IndexNode):
                obj = node.obj or self.object_map.get(node.index_id, None)
                if obj is not None:
                    if self._verbose:
                        print_text(
                            f"Retrieval entering {node.index_id}: {obj.__class__.__name__}\n",
                            color="llama_turquoise",
                        )
                    retrieved_nodes.extend(
                        self._retrieve_from_object(
                            obj, query_bundle=query_bundle, score=score
                        )
                    )
                else:
                    retrieved_nodes.append(n)
            else:
                retrieved_nodes.append(n)

        seen = set()
        return [
            n
            for n in retrieved_nodes
            if not (n.node.hash in seen or seen.add(n.node.hash))  # type: ignore[func-returns-value]
        ]

    async def _ahandle_recursive_retrieval(
        self, query_bundle: QueryBundle, nodes: List[NodeWithScore]
    ) -> List[NodeWithScore]:
        retrieved_nodes: List[NodeWithScore] = []
        for n in nodes:
            node = n.node
            score = n.score or 1.0
            if isinstance(node, IndexNode):
                obj = node.obj or self.object_map.get(node.index_id, None)
                if obj is not None:
                    if self._verbose:
                        print_text(
                            f"Retrieval entering {node.index_id}: {obj.__class__.__name__}\n",
                            color="llama_turquoise",
                        )
                    # TODO: Add concurrent execution via `run_jobs()` ?
                    retrieved_nodes.extend(
                        await self._aretrieve_from_object(
                            obj, query_bundle=query_bundle, score=score
                        )
                    )
                else:
                    retrieved_nodes.append(n)
            else:
                retrieved_nodes.append(n)

        # remove any duplicates based on hash and ref_doc_id
        seen = set()
        return [
            n
            for n in retrieved_nodes
            if not (
                (n.node.hash, n.node.ref_doc_id) in seen
                or seen.add((n.node.hash, n.node.ref_doc_id))  # type: ignore[func-returns-value]
            )
        ]

    @dispatcher.span
    def retrieve(self, str_or_query_bundle: QueryType) -> List[NodeWithScore]:
        """Retrieve nodes given query.

        Args:
            str_or_query_bundle (QueryType): Either a query string or
                a QueryBundle object.

        """
        self._check_callback_manager()
        dispatcher.event(
            RetrievalStartEvent(
                str_or_query_bundle=str_or_query_bundle,
            )
        )
        if isinstance(str_or_query_bundle, str):
            query_bundle = QueryBundle(str_or_query_bundle)
        else:
            query_bundle = str_or_query_bundle
        with self.callback_manager.as_trace("query"):
            with self.callback_manager.event(
                CBEventType.RETRIEVE,
                payload={EventPayload.QUERY_STR: query_bundle.query_str},
            ) as retrieve_event:
                nodes = self._retrieve(query_bundle)
                nodes = self._handle_recursive_retrieval(query_bundle, nodes)
                retrieve_event.on_end(
                    payload={EventPayload.NODES: nodes},
                )
        dispatcher.event(
            RetrievalEndEvent(
                str_or_query_bundle=str_or_query_bundle,
                nodes=nodes,
            )
        )
        return nodes

    @dispatcher.span
    async def aretrieve(self, str_or_query_bundle: QueryType) -> List[NodeWithScore]:
        self._check_callback_manager()

        dispatcher.event(
            RetrievalStartEvent(
                str_or_query_bundle=str_or_query_bundle,
            )
        )
        if isinstance(str_or_query_bundle, str):
            query_bundle = QueryBundle(str_or_query_bundle)
        else:
            query_bundle = str_or_query_bundle
        with self.callback_manager.as_trace("query"):
            with self.callback_manager.event(
                CBEventType.RETRIEVE,
                payload={EventPayload.QUERY_STR: query_bundle.query_str},
            ) as retrieve_event:
                nodes = await self._aretrieve(query_bundle=query_bundle)
                nodes = await self._ahandle_recursive_retrieval(
                    query_bundle=query_bundle, nodes=nodes
                )
                retrieve_event.on_end(
                    payload={EventPayload.NODES: nodes},
                )
        dispatcher.event(
            RetrievalEndEvent(
                str_or_query_bundle=str_or_query_bundle,
                nodes=nodes,
            )
        )
        return nodes

    @abstractmethod
    def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """Retrieve nodes given query.

        Implemented by the user.

        """

    # TODO: make this abstract
    # @abstractmethod
    async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """Asynchronously retrieve nodes given query.

        Implemented by the user.

        """
        return self._retrieve(query_bundle)

    def _as_query_component(self, **kwargs: Any) -> QueryComponent:
        """Return a query component."""
        return RetrieverComponent(retriever=self)

retrieve #

retrieve(str_or_query_bundle: QueryType) -> List[NodeWithScore]

Retrieve nodes given query.

Parameters:

Name Type Description Default
str_or_query_bundle QueryType

Either a query string or a QueryBundle object.

required
Source code in llama-index-core/llama_index/core/base/base_retriever.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
@dispatcher.span
def retrieve(self, str_or_query_bundle: QueryType) -> List[NodeWithScore]:
    """Retrieve nodes given query.

    Args:
        str_or_query_bundle (QueryType): Either a query string or
            a QueryBundle object.

    """
    self._check_callback_manager()
    dispatcher.event(
        RetrievalStartEvent(
            str_or_query_bundle=str_or_query_bundle,
        )
    )
    if isinstance(str_or_query_bundle, str):
        query_bundle = QueryBundle(str_or_query_bundle)
    else:
        query_bundle = str_or_query_bundle
    with self.callback_manager.as_trace("query"):
        with self.callback_manager.event(
            CBEventType.RETRIEVE,
            payload={EventPayload.QUERY_STR: query_bundle.query_str},
        ) as retrieve_event:
            nodes = self._retrieve(query_bundle)
            nodes = self._handle_recursive_retrieval(query_bundle, nodes)
            retrieve_event.on_end(
                payload={EventPayload.NODES: nodes},
            )
    dispatcher.event(
        RetrievalEndEvent(
            str_or_query_bundle=str_or_query_bundle,
            nodes=nodes,
        )
    )
    return nodes

BaseImageRetriever #

Bases: PromptMixin, DispatcherSpanMixin

Base Image Retriever Abstraction.

Source code in llama-index-core/llama_index/core/image_retriever.py
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
class BaseImageRetriever(PromptMixin, DispatcherSpanMixin):
    """Base Image Retriever Abstraction."""

    def text_to_image_retrieve(
        self, str_or_query_bundle: QueryType
    ) -> List[NodeWithScore]:
        """Retrieve image nodes given query or single image input.

        Args:
            str_or_query_bundle (QueryType): a query text
            string or a QueryBundle object.
        """
        if isinstance(str_or_query_bundle, str):
            str_or_query_bundle = QueryBundle(query_str=str_or_query_bundle)
        return self._text_to_image_retrieve(str_or_query_bundle)

    @abstractmethod
    def _text_to_image_retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """Retrieve image nodes or documents given query text.

        Implemented by the user.

        """

    def image_to_image_retrieve(
        self, str_or_query_bundle: QueryType
    ) -> List[NodeWithScore]:
        """Retrieve image nodes given single image input.

        Args:
            str_or_query_bundle (QueryType): a image path
            string or a QueryBundle object.
        """
        if isinstance(str_or_query_bundle, str):
            # leave query_str as empty since we are using image_path for image retrieval
            str_or_query_bundle = QueryBundle(
                query_str="", image_path=str_or_query_bundle
            )
        return self._image_to_image_retrieve(str_or_query_bundle)

    @abstractmethod
    def _image_to_image_retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """Retrieve image nodes or documents given image.

        Implemented by the user.

        """

    # Async Methods
    async def atext_to_image_retrieve(
        self,
        str_or_query_bundle: QueryType,
    ) -> List[NodeWithScore]:
        if isinstance(str_or_query_bundle, str):
            str_or_query_bundle = QueryBundle(query_str=str_or_query_bundle)
        return await self._atext_to_image_retrieve(str_or_query_bundle)

    @abstractmethod
    async def _atext_to_image_retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """Async retrieve image nodes or documents given query text.

        Implemented by the user.

        """

    async def aimage_to_image_retrieve(
        self,
        str_or_query_bundle: QueryType,
    ) -> List[NodeWithScore]:
        if isinstance(str_or_query_bundle, str):
            # leave query_str as empty since we are using image_path for image retrieval
            str_or_query_bundle = QueryBundle(
                query_str="", image_path=str_or_query_bundle
            )
        return await self._aimage_to_image_retrieve(str_or_query_bundle)

    @abstractmethod
    async def _aimage_to_image_retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """Async retrieve image nodes or documents given image.

        Implemented by the user.

        """

text_to_image_retrieve #

text_to_image_retrieve(str_or_query_bundle: QueryType) -> List[NodeWithScore]

Retrieve image nodes given query or single image input.

Parameters:

Name Type Description Default
str_or_query_bundle QueryType

a query text

required
Source code in llama-index-core/llama_index/core/image_retriever.py
13
14
15
16
17
18
19
20
21
22
23
24
def text_to_image_retrieve(
    self, str_or_query_bundle: QueryType
) -> List[NodeWithScore]:
    """Retrieve image nodes given query or single image input.

    Args:
        str_or_query_bundle (QueryType): a query text
        string or a QueryBundle object.
    """
    if isinstance(str_or_query_bundle, str):
        str_or_query_bundle = QueryBundle(query_str=str_or_query_bundle)
    return self._text_to_image_retrieve(str_or_query_bundle)

image_to_image_retrieve #

image_to_image_retrieve(str_or_query_bundle: QueryType) -> List[NodeWithScore]

Retrieve image nodes given single image input.

Parameters:

Name Type Description Default
str_or_query_bundle QueryType

a image path

required
Source code in llama-index-core/llama_index/core/image_retriever.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def image_to_image_retrieve(
    self, str_or_query_bundle: QueryType
) -> List[NodeWithScore]:
    """Retrieve image nodes given single image input.

    Args:
        str_or_query_bundle (QueryType): a image path
        string or a QueryBundle object.
    """
    if isinstance(str_or_query_bundle, str):
        # leave query_str as empty since we are using image_path for image retrieval
        str_or_query_bundle = QueryBundle(
            query_str="", image_path=str_or_query_bundle
        )
    return self._image_to_image_retrieve(str_or_query_bundle)