Skip to content

Google

GmailReader #

Bases: BaseReader, BaseModel

Gmail reader.

Reads emails

Parameters:

Name Type Description Default
max_results int

Defaults to 10.

required
query str

Gmail query. Defaults to None.

required
service Any

Gmail service. Defaults to None.

required
results_per_page Optional[int]

Max number of results per page. Defaults to 10.

required
use_iterative_parser bool

Use iterative parser. Defaults to False.

required
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/gmail/base.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
class GmailReader(BaseReader, BaseModel):
    """Gmail reader.

    Reads emails

    Args:
        max_results (int): Defaults to 10.
        query (str): Gmail query. Defaults to None.
        service (Any): Gmail service. Defaults to None.
        results_per_page (Optional[int]): Max number of results per page. Defaults to 10.
        use_iterative_parser (bool): Use iterative parser. Defaults to False.
    """

    query: str = None
    use_iterative_parser: bool = False
    max_results: int = 10
    service: Any
    results_per_page: Optional[int]

    def load_data(self) -> List[Document]:
        """Load emails from the user's account."""
        from googleapiclient.discovery import build

        credentials = self._get_credentials()
        if not self.service:
            self.service = build("gmail", "v1", credentials=credentials)

        messages = self.search_messages()

        results = []
        for message in messages:
            text = message.pop("body")
            extra_info = message
            results.append(Document(text=text, extra_info=extra_info or {}))

        return results

    def _get_credentials(self) -> Any:
        """Get valid user credentials from storage.

        The file token.json stores the user's access and refresh tokens, and is
        created automatically when the authorization flow completes for the first
        time.

        Returns:
            Credentials, the obtained credential.
        """
        import os

        from google_auth_oauthlib.flow import InstalledAppFlow

        from google.auth.transport.requests import Request
        from google.oauth2.credentials import Credentials

        creds = None
        if os.path.exists("token.json"):
            creds = Credentials.from_authorized_user_file("token.json", SCOPES)
        # If there are no (valid) credentials available, let the user log in.
        if not creds or not creds.valid:
            if creds and creds.expired and creds.refresh_token:
                creds.refresh(Request())
            else:
                flow = InstalledAppFlow.from_client_secrets_file(
                    "credentials.json", SCOPES
                )
                creds = flow.run_local_server(port=8080)
            # Save the credentials for the next run
            with open("token.json", "w") as token:
                token.write(creds.to_json())

        return creds

    def search_messages(self):
        query = self.query

        max_results = self.max_results
        if self.results_per_page:
            max_results = self.results_per_page

        results = (
            self.service.users()
            .messages()
            .list(userId="me", q=query, maxResults=int(max_results))
            .execute()
        )
        messages = results.get("messages", [])

        if len(messages) < self.max_results:
            # paginate if there are more results
            while "nextPageToken" in results:
                page_token = results["nextPageToken"]
                results = (
                    self.service.users()
                    .messages()
                    .list(
                        userId="me",
                        q=query,
                        pageToken=page_token,
                        maxResults=int(max_results),
                    )
                    .execute()
                )
                messages.extend(results["messages"])
                if len(messages) >= self.max_results:
                    break

        result = []
        try:
            for message in messages:
                message_data = self.get_message_data(message)
                if not message_data:
                    continue
                result.append(message_data)
        except Exception as e:
            raise Exception("Can't get message data" + str(e))

        return result

    def get_message_data(self, message):
        message_id = message["id"]
        message_data = (
            self.service.users()
            .messages()
            .get(format="raw", userId="me", id=message_id)
            .execute()
        )
        if self.use_iterative_parser:
            body = self.extract_message_body_iterative(message_data)
        else:
            body = self.extract_message_body(message_data)

        if not body:
            return None

        # https://developers.google.com/gmail/api/reference/rest/v1/users.messages
        return {
            "id": message_data["id"],
            "threadId": message_data["threadId"],
            "snippet": message_data["snippet"],
            "internalDate": message_data["internalDate"],
            "body": body,
        }

    def extract_message_body_iterative(self, message: dict):
        if message["raw"]:
            body = base64.urlsafe_b64decode(message["raw"].encode("utf-8"))
            mime_msg = email.message_from_bytes(body)
        else:
            mime_msg = message

        body_text = ""
        if mime_msg.get_content_type() == "text/plain":
            plain_text = mime_msg.get_payload(decode=True)
            charset = mime_msg.get_content_charset("utf-8")
            body_text = plain_text.decode(charset).encode("utf-8").decode("utf-8")

        elif mime_msg.get_content_maintype() == "multipart":
            msg_parts = mime_msg.get_payload()
            for msg_part in msg_parts:
                body_text += self.extract_message_body_iterative(msg_part)

        return body_text

    def extract_message_body(self, message: dict):
        from bs4 import BeautifulSoup

        try:
            body = base64.urlsafe_b64decode(message["raw"].encode("utf-8"))
            mime_msg = email.message_from_bytes(body)

            # If the message body contains HTML, parse it with BeautifulSoup
            if "text/html" in mime_msg:
                soup = BeautifulSoup(body, "html.parser")
                body = soup.get_text()
            return body.decode("utf-8")
        except Exception as e:
            raise Exception("Can't parse message body" + str(e))

load_data #

load_data() -> List[Document]

Load emails from the user's account.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/gmail/base.py
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def load_data(self) -> List[Document]:
    """Load emails from the user's account."""
    from googleapiclient.discovery import build

    credentials = self._get_credentials()
    if not self.service:
        self.service = build("gmail", "v1", credentials=credentials)

    messages = self.search_messages()

    results = []
    for message in messages:
        text = message.pop("body")
        extra_info = message
        results.append(Document(text=text, extra_info=extra_info or {}))

    return results

GoogleCalendarReader #

Bases: BaseReader

Google Calendar reader.

Reads events from Google Calendar

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/calendar/base.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
class GoogleCalendarReader(BaseReader):
    """Google Calendar reader.

    Reads events from Google Calendar

    """

    def load_data(
        self,
        number_of_results: Optional[int] = 100,
        start_date: Optional[Union[str, datetime.date]] = None,
    ) -> List[Document]:
        """Load data from user's calendar.

        Args:
            number_of_results (Optional[int]): the number of events to return. Defaults to 100.
            start_date (Optional[Union[str, datetime.date]]): the start date to return events from. Defaults to today.
        """
        from googleapiclient.discovery import build

        credentials = self._get_credentials()
        service = build("calendar", "v3", credentials=credentials)

        if start_date is None:
            start_date = datetime.date.today()
        elif isinstance(start_date, str):
            start_date = datetime.date.fromisoformat(start_date)

        start_datetime = datetime.datetime.combine(start_date, datetime.time.min)
        start_datetime_utc = start_datetime.strftime("%Y-%m-%dT%H:%M:%S.%fZ")

        events_result = (
            service.events()
            .list(
                calendarId="primary",
                timeMin=start_datetime_utc,
                maxResults=number_of_results,
                singleEvents=True,
                orderBy="startTime",
            )
            .execute()
        )

        events = events_result.get("items", [])

        if not events:
            return []

        results = []
        for event in events:
            if "dateTime" in event["start"]:
                start_time = event["start"]["dateTime"]
            else:
                start_time = event["start"]["date"]

            if "dateTime" in event["end"]:
                end_time = event["end"]["dateTime"]
            else:
                end_time = event["end"]["date"]

            event_string = f"Status: {event['status']}, "
            event_string += f"Summary: {event['summary']}, "
            event_string += f"Start time: {start_time}, "
            event_string += f"End time: {end_time}, "

            organizer = event.get("organizer", {})
            display_name = organizer.get("displayName", "N/A")
            email = organizer.get("email", "N/A")
            if display_name != "N/A":
                event_string += f"Organizer: {display_name} ({email})"
            else:
                event_string += f"Organizer: {email}"

            results.append(Document(text=event_string))

        return results

    def _get_credentials(self) -> Any:
        """Get valid user credentials from storage.

        The file token.json stores the user's access and refresh tokens, and is
        created automatically when the authorization flow completes for the first
        time.

        Returns:
            Credentials, the obtained credential.
        """
        from google_auth_oauthlib.flow import InstalledAppFlow

        from google.auth.transport.requests import Request
        from google.oauth2.credentials import Credentials

        creds = None
        if os.path.exists("token.json"):
            creds = Credentials.from_authorized_user_file("token.json", SCOPES)
        # If there are no (valid) credentials available, let the user log in.
        if not creds or not creds.valid:
            if creds and creds.expired and creds.refresh_token:
                creds.refresh(Request())
            else:
                flow = InstalledAppFlow.from_client_secrets_file(
                    "credentials.json", SCOPES
                )
                creds = flow.run_local_server(port=0)
            # Save the credentials for the next run
            with open("token.json", "w") as token:
                token.write(creds.to_json())

        return creds

load_data #

load_data(number_of_results: Optional[int] = 100, start_date: Optional[Union[str, date]] = None) -> List[Document]

Load data from user's calendar.

Parameters:

Name Type Description Default
number_of_results Optional[int]

the number of events to return. Defaults to 100.

100
start_date Optional[Union[str, date]]

the start date to return events from. Defaults to today.

None
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/calendar/base.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def load_data(
    self,
    number_of_results: Optional[int] = 100,
    start_date: Optional[Union[str, datetime.date]] = None,
) -> List[Document]:
    """Load data from user's calendar.

    Args:
        number_of_results (Optional[int]): the number of events to return. Defaults to 100.
        start_date (Optional[Union[str, datetime.date]]): the start date to return events from. Defaults to today.
    """
    from googleapiclient.discovery import build

    credentials = self._get_credentials()
    service = build("calendar", "v3", credentials=credentials)

    if start_date is None:
        start_date = datetime.date.today()
    elif isinstance(start_date, str):
        start_date = datetime.date.fromisoformat(start_date)

    start_datetime = datetime.datetime.combine(start_date, datetime.time.min)
    start_datetime_utc = start_datetime.strftime("%Y-%m-%dT%H:%M:%S.%fZ")

    events_result = (
        service.events()
        .list(
            calendarId="primary",
            timeMin=start_datetime_utc,
            maxResults=number_of_results,
            singleEvents=True,
            orderBy="startTime",
        )
        .execute()
    )

    events = events_result.get("items", [])

    if not events:
        return []

    results = []
    for event in events:
        if "dateTime" in event["start"]:
            start_time = event["start"]["dateTime"]
        else:
            start_time = event["start"]["date"]

        if "dateTime" in event["end"]:
            end_time = event["end"]["dateTime"]
        else:
            end_time = event["end"]["date"]

        event_string = f"Status: {event['status']}, "
        event_string += f"Summary: {event['summary']}, "
        event_string += f"Start time: {start_time}, "
        event_string += f"End time: {end_time}, "

        organizer = event.get("organizer", {})
        display_name = organizer.get("displayName", "N/A")
        email = organizer.get("email", "N/A")
        if display_name != "N/A":
            event_string += f"Organizer: {display_name} ({email})"
        else:
            event_string += f"Organizer: {email}"

        results.append(Document(text=event_string))

    return results

GoogleChatReader #

Bases: BasePydanticReader

Google Chat Reader.

Reads messages from Google Chat

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/chat/base.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class GoogleChatReader(BasePydanticReader):
    """Google Chat Reader.

    Reads messages from Google Chat
    """

    is_remote: bool = True

    @classmethod
    def class_name(cls) -> str:
        """Gets name identifier of class."""
        return "GoogleChatReader"

    def load_data(
        self,
        space_names: List[str],
        num_messages: int = -1,
        after: datetime = None,
        before: datetime = None,
        order_asc: bool = True,
    ) -> List[Document]:
        """Loads documents from Google Chat.

        Args:
            space_name (List[str]): List of Space ID names found at top of URL (without the "space/").
            num_messages (int, optional): Number of messages to load (may exceed this number). If -1, then loads all messages. Defaults to -1.
            after (datetime, optional): Only search for messages after this datetime (UTC). Defaults to None.
            before (datetime, optional): Only search for messages before this datetime (UTC). Defaults to None.
            order_asc (bool, optional): If messages should be ordered by ascending time order. Defaults to True.

        Returns:
            List[Document]: List of document objects
        """
        from googleapiclient.discovery import build

        # get credentials and create chat service
        credentials = self._get_credentials()
        service = build("chat", "v1", credentials=credentials)

        logger.info("Credentials successfully obtained.")

        res = []
        for space_name in space_names:
            all_msgs = self._get_msgs(
                service, space_name, num_messages, after, before, order_asc
            )  # gets raw API output in list of dict
            msgs_sorted = self._sort_msgs(
                space_name, all_msgs
            )  # puts messages into list of Document objects
            res.extend(msgs_sorted)
            logger.info(f"Successfully retrieved messages from {space_name}")

        return res

    def _sort_msgs(self, space_name: str, all_msgs: List[Dict[str, Any]]) -> Document:
        """Sorts messages from space and puts them into Document.

        Args:
            space_name (str): Space ID
            all_msgs (List[Dict[str, Any]]): All messages
            order_asc (bool): If ordered by ascending order

        Returns:
            Document: Document with messages
        """
        res = []
        id_to_text = self._id_to_text(
            all_msgs
        )  # maps message ID to text (useful for retrieving info about quote replies)
        thread_msg_cnt = self._get_thread_msg_cnt(
            all_msgs
        )  # gets message count in each thread
        for msg in all_msgs:
            if any(
                i not in msg for i in ("name", "text", "thread", "sender", "createTime")
            ):
                # invalid message
                continue

            if "name" not in msg["thread"] or "name" not in msg["sender"]:
                # invalid message
                continue

            metadata = {
                "space_id": space_name,
                "sender_id": msg["sender"]["name"],
                "timestamp": msg["createTime"],
            }

            if (
                "quotedMessageMetadata" in msg
                and msg["quotedMessageMetadata"]["name"] in id_to_text
            ):
                # metadata for a quote reply
                metadata["quoted_msg"] = id_to_text[
                    msg["quotedMessageMetadata"]["name"]
                ]

            # adds metadata for threads
            # all threads with a message count of 1 gets counted as the "main thread"
            thread_id = msg["thread"]["name"]
            if thread_msg_cnt[thread_id] > 1:
                metadata["thread_id"] = thread_id
            else:
                metadata["thread_id"] = "Main Thread"

            doc = Document(id_=msg["name"], text=msg["text"], metadata=metadata)
            res.append(doc)

        return res

    def _id_to_text(self, all_msgs: List[Dict[str, Any]]) -> Dict[str, str]:
        """Maps message ID to text, used for quote replies.

        Args:
            all_msgs (List[Dict[str, Any]]): All messages

        Returns:
            Dict[str, str]: Map message ID -> message text
        """
        res = {}

        for msg in all_msgs:
            if "text" not in msg or "name" not in msg:
                continue

            res[msg["name"]] = msg["text"]

        return res

    def _get_thread_msg_cnt(self, all_msgs: List[Dict[str, Any]]) -> Dict[str, int]:
        """Gets message count for each thread ID.

        Args:
            all_msgs (List[Dict[str, Any]]): All messages

        Returns:
            Dict[str, int]: Maps thread ID -> count of messages that were in that thread
        """
        # maps thread ID -> count
        threads_dict = {}
        for msg in all_msgs:
            thread_name = msg["thread"]["name"]
            if thread_name not in threads_dict:
                # add thread name to dict
                threads_dict[thread_name] = 1
            else:
                threads_dict[thread_name] += 1

        return threads_dict

    def _get_msgs(
        self,
        service: Any,
        space_name: str,
        num_messages: int = -1,
        after: datetime = None,
        before: datetime = None,
        order_asc: bool = True,
    ) -> List[Dict[str, Any]]:
        """Puts raw API output of chat messages from one space into a list.

        Args:
            service (Any): Google Chat API service object
            space_name (str): Space ID name found at top of URL (without the "space/").
            num_messages (int, optional): Number of messages to load (may exceed this number). If -1, then loads all messages. Defaults to -1.
            after (datetime, optional): Only search for messages after this datetime (UTC). Defaults to None.
            before (datetime, optional): Only search for messages before this datetime (UTC). Defaults to None.
            order_asc (bool, optional): If messages should be ordered by ascending time order. Defaults to True.

        Returns:
            List[Dict[str, Any]]: List of message objects
        """
        all_msgs = []

        # API parameters
        parent = f"spaces/{space_name}"
        page_token = ""
        filter_str = ""
        if after is not None:
            offset_str = ""
            if after.utcoffset() is None:
                offset_str = "+00:00"
            filter_str += f'createTime > "{after.isoformat("T") + offset_str}" AND '
        if before is not None:
            offset_str = ""
            if before.utcoffset() is None:
                offset_str = "+00:00"
            filter_str += f'createTime < "{before.isoformat("T") + offset_str}" AND '
        filter_str = filter_str[:-4]
        order_by = f"createTime {'ASC' if order_asc else 'DESC'}"

        # Get all messages from space
        while num_messages == -1 or len(all_msgs) < num_messages:
            req_msg = num_messages - len(all_msgs)

            result = (
                service.spaces()
                .messages()
                .list(
                    parent=parent,
                    pageSize=req_msg if num_messages != -1 else 1000,
                    pageToken=page_token,
                    filter=filter_str,
                    orderBy=order_by,
                    showDeleted=False,
                )
                .execute()
            )

            if result and "messages" in result:
                all_msgs.extend(result["messages"])

            # if no more messages to load
            if not result or "nextPageToken" not in result:
                break

            page_token = result["nextPageToken"]

        return all_msgs

    def _get_credentials(self) -> Any:
        """Get valid user credentials from storage.

        The file token.json stores the user's access and refresh tokens, and is
        created automatically when the authorization flow completes for the first
        time.

        Returns:
            Credentials, the obtained credential.
        """
        import os

        from google_auth_oauthlib.flow import InstalledAppFlow
        from google.auth.transport.requests import Request

        from google.oauth2.credentials import Credentials

        creds = None
        if os.path.exists("token.json"):
            creds = Credentials.from_authorized_user_file("token.json", SCOPES)
        # If there are no (valid) credentials available, let the user log in.
        if not creds or not creds.valid:
            if creds and creds.expired and creds.refresh_token:
                creds.refresh(Request())
            else:
                flow = InstalledAppFlow.from_client_secrets_file(
                    "credentials.json", SCOPES
                )
                creds = flow.run_local_server(port=0)
            # Save the credentials for the next run
            with open("token.json", "w") as token:
                token.write(creds.to_json())

        return creds

class_name classmethod #

class_name() -> str

Gets name identifier of class.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/chat/base.py
25
26
27
28
@classmethod
def class_name(cls) -> str:
    """Gets name identifier of class."""
    return "GoogleChatReader"

load_data #

load_data(space_names: List[str], num_messages: int = -1, after: datetime = None, before: datetime = None, order_asc: bool = True) -> List[Document]

Loads documents from Google Chat.

Parameters:

Name Type Description Default
space_name List[str]

List of Space ID names found at top of URL (without the "space/").

required
num_messages int

Number of messages to load (may exceed this number). If -1, then loads all messages. Defaults to -1.

-1
after datetime

Only search for messages after this datetime (UTC). Defaults to None.

None
before datetime

Only search for messages before this datetime (UTC). Defaults to None.

None
order_asc bool

If messages should be ordered by ascending time order. Defaults to True.

True

Returns:

Type Description
List[Document]

List[Document]: List of document objects

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/chat/base.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def load_data(
    self,
    space_names: List[str],
    num_messages: int = -1,
    after: datetime = None,
    before: datetime = None,
    order_asc: bool = True,
) -> List[Document]:
    """Loads documents from Google Chat.

    Args:
        space_name (List[str]): List of Space ID names found at top of URL (without the "space/").
        num_messages (int, optional): Number of messages to load (may exceed this number). If -1, then loads all messages. Defaults to -1.
        after (datetime, optional): Only search for messages after this datetime (UTC). Defaults to None.
        before (datetime, optional): Only search for messages before this datetime (UTC). Defaults to None.
        order_asc (bool, optional): If messages should be ordered by ascending time order. Defaults to True.

    Returns:
        List[Document]: List of document objects
    """
    from googleapiclient.discovery import build

    # get credentials and create chat service
    credentials = self._get_credentials()
    service = build("chat", "v1", credentials=credentials)

    logger.info("Credentials successfully obtained.")

    res = []
    for space_name in space_names:
        all_msgs = self._get_msgs(
            service, space_name, num_messages, after, before, order_asc
        )  # gets raw API output in list of dict
        msgs_sorted = self._sort_msgs(
            space_name, all_msgs
        )  # puts messages into list of Document objects
        res.extend(msgs_sorted)
        logger.info(f"Successfully retrieved messages from {space_name}")

    return res

GoogleDocsReader #

Bases: BasePydanticReader

Google Docs reader.

Reads a page from Google Docs

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/docs/base.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
class GoogleDocsReader(BasePydanticReader):
    """Google Docs reader.

    Reads a page from Google Docs

    """

    is_remote: bool = True

    split_on_heading_level: Optional[int] = Field(
        default=None,
        description="If set the document will be split on the specified heading level.",
    )

    include_toc: bool = Field(
        default=True, description="Include table of contents elements."
    )

    @classmethod
    def class_name(cls) -> str:
        return "GoogleDocsReader"

    def load_data(self, document_ids: List[str]) -> List[Document]:
        """Load data from the input directory.

        Args:
            document_ids (List[str]): a list of document ids.
        """
        if document_ids is None:
            raise ValueError('Must specify a "document_ids" in `load_kwargs`.')

        results = []
        for document_id in document_ids:
            docs = self._load_doc(document_id)
            results.extend(docs)

        return results

    def _load_doc(self, document_id: str) -> str:
        """Load a document from Google Docs.

        Args:
            document_id: the document id.

        Returns:
            The document text.
        """
        credentials = self._get_credentials()
        docs_service = discovery.build("docs", "v1", credentials=credentials)
        google_doc = docs_service.documents().get(documentId=document_id).execute()
        google_doc_content = google_doc.get("body").get("content")

        doc_metadata = {"document_id": document_id}

        return self._structural_elements_to_docs(google_doc_content, doc_metadata)

    def _get_credentials(self) -> Any:
        """Get valid user credentials from storage.

        The file token.json stores the user's access and refresh tokens, and is
        created automatically when the authorization flow completes for the first
        time.

        Returns:
            Credentials, the obtained credential.
        """
        creds = None
        port = 8080
        if os.path.exists("token.json"):
            creds = Credentials.from_authorized_user_file("token.json", SCOPES)
        # If there are no (valid) credentials available, let the user log in.
        if not creds or not creds.valid:
            if creds and creds.expired and creds.refresh_token:
                creds.refresh(Request())
            else:
                flow = InstalledAppFlow.from_client_secrets_file(
                    "credentials.json", SCOPES
                )

                with open("credentials.json") as json_file:
                    client_config = json.load(json_file)
                    redirect_uris = client_config["web"].get("redirect_uris", [])
                    if len(redirect_uris) > 0:
                        port = redirect_uris[0].strip("/").split(":")[-1]

                creds = flow.run_local_server(port=port)
            # Save the credentials for the next run
            with open("token.json", "w") as token:
                token.write(creds.to_json())

        return creds

    def _read_paragraph_element(self, element: Any) -> Any:
        """Return the text in the given ParagraphElement.

        Args:
            element: a ParagraphElement from a Google Doc.
        """
        text_run = element.get("textRun")
        if not text_run:
            return ""
        return text_run.get("content")

    def _read_structural_elements(self, elements: List[Any]) -> Any:
        """Recurse through a list of Structural Elements.

        Read a document's text where text may be in nested elements.

        Args:
            elements: a list of Structural Elements.
        """
        text = ""
        for value in elements:
            if "paragraph" in value:
                elements = value.get("paragraph").get("elements")
                for elem in elements:
                    text += self._read_paragraph_element(elem)
            elif "table" in value:
                # The text in table cells are in nested Structural Elements
                # and tables may be nested.
                table = value.get("table")
                for row in table.get("tableRows"):
                    cells = row.get("tableCells")
                    for cell in cells:
                        text += self._read_structural_elements(cell.get("content"))
            elif "tableOfContents" in value:
                # The text in the TOC is also in a Structural Element.
                toc = value.get("tableOfContents")
                text += self._read_structural_elements(toc.get("content"))
        return text

    def _determine_heading_level(self, element):
        """Extracts the heading level, label, and ID from a document element.

        Args:
            element: a Structural Element.
        """
        level = None
        heading_key = None
        heading_id = None
        if self.split_on_heading_level and "paragraph" in element:
            style = element.get("paragraph").get("paragraphStyle")
            style_type = style.get("namedStyleType", "")
            heading_id = style.get("headingId", None)
            if style_type == "TITLE":
                level = 0
                heading_key = "title"
            elif style_type.startswith("HEADING_"):
                level = int(style_type.split("_")[1])
                if level > self.split_on_heading_level:
                    return None, None, None

                heading_key = f"Header {level}"

        return level, heading_key, heading_id

    def _generate_doc_id(self, metadata: dict):
        if "heading_id" in metadata:
            heading_id = metadata["heading_id"]
        else:
            heading_id = "".join(
                random.choices(string.ascii_letters + string.digits, k=8)
            )
        return f"{metadata['document_id']}_{heading_id}"

    def _structural_elements_to_docs(
        self, elements: List[Any], doc_metadata: dict
    ) -> Any:
        """Recurse through a list of Structural Elements.

        Split documents on heading if split_on_heading_level is set.

        Args:
            elements: a list of Structural Elements.
        """
        docs = []

        current_heading_level = self.split_on_heading_level

        metadata = doc_metadata.copy()
        text = ""
        for value in elements:
            element_text = self._read_structural_elements([value])

            level, heading_key, heading_id = self._determine_heading_level(value)

            if level is not None:
                if level == self.split_on_heading_level:
                    if text.strip():
                        docs.append(
                            Document(
                                id_=self._generate_doc_id(metadata),
                                text=text,
                                metadata=metadata.copy(),
                            )
                        )
                        text = ""
                    if "heading_id" in metadata:
                        metadata["heading_id"] = heading_id
                elif level < current_heading_level:
                    metadata = doc_metadata.copy()

                metadata[heading_key] = element_text
                current_heading_level = level
            else:
                text += element_text

        if text:
            if docs:
                id_ = self._generate_doc_id(metadata)
            else:
                id_ = metadata["document_id"]
            docs.append(Document(id_=id_, text=text, metadata=metadata))

        return docs

load_data #

load_data(document_ids: List[str]) -> List[Document]

Load data from the input directory.

Parameters:

Name Type Description Default
document_ids List[str]

a list of document ids.

required
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/docs/base.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def load_data(self, document_ids: List[str]) -> List[Document]:
    """Load data from the input directory.

    Args:
        document_ids (List[str]): a list of document ids.
    """
    if document_ids is None:
        raise ValueError('Must specify a "document_ids" in `load_kwargs`.')

    results = []
    for document_id in document_ids:
        docs = self._load_doc(document_id)
        results.extend(docs)

    return results

GoogleDriveReader #

Bases: BasePydanticReader, ResourcesReaderMixin, FileSystemReaderMixin

Google Drive Reader.

Reads files from Google Drive. Credentials passed directly to the constructor will take precedence over those passed as file paths.

Parameters:

Name Type Description Default
drive_id Optional[str]

Drive id of the shared drive in google drive.

None
folder_id Optional[str]

Folder id of the folder in google drive.

None
file_ids Optional[str]

File ids of the files in google drive.

None
query_string Optional[str]

A more generic query string to filter the documents, e.g. "name contains 'test'". It gives more flexibility to filter the documents. More info: https://developers.google.com/drive/api/v3/search-files

None
is_cloud Optional[bool]

Whether the reader is being used in a cloud environment. Will not save credentials to disk if so. Defaults to False.

False
credentials_path Optional[str]

Path to client config file. Defaults to None.

'credentials.json'
token_path Optional[str]

Path to authorized user info file. Defaults to None.

'token.json'
service_account_key_path Optional[str]

Path to service account key file. Defaults to None.

'service_account_key.json'
client_config Optional[dict]

Dictionary containing client config. Defaults to None.

None
authorized_user_info Optional[dict]

Dicstionary containing authorized user info. Defaults to None.

None
service_account_key Optional[dict]

Dictionary containing service account key. Defaults to None.

None
file_extractor Optional[Dict[str, BaseReader]]

A mapping of file extension to a BaseReader class that specifies how to convert that file to text. See SimpleDirectoryReader for more details.

None
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/drive/base.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
class GoogleDriveReader(
    BasePydanticReader, ResourcesReaderMixin, FileSystemReaderMixin
):
    """Google Drive Reader.

    Reads files from Google Drive. Credentials passed directly to the constructor
    will take precedence over those passed as file paths.

    Args:
        drive_id (Optional[str]): Drive id of the shared drive in google drive.
        folder_id (Optional[str]): Folder id of the folder in google drive.
        file_ids (Optional[str]): File ids of the files in google drive.
        query_string: A more generic query string to filter the documents, e.g. "name contains 'test'".
            It gives more flexibility to filter the documents. More info: https://developers.google.com/drive/api/v3/search-files
        is_cloud (Optional[bool]): Whether the reader is being used in
            a cloud environment. Will not save credentials to disk if so.
            Defaults to False.
        credentials_path (Optional[str]): Path to client config file.
            Defaults to None.
        token_path (Optional[str]): Path to authorized user info file. Defaults
            to None.
        service_account_key_path (Optional[str]): Path to service account key
            file. Defaults to None.
        client_config (Optional[dict]): Dictionary containing client config.
            Defaults to None.
        authorized_user_info (Optional[dict]): Dicstionary containing authorized
            user info. Defaults to None.
        service_account_key (Optional[dict]): Dictionary containing service
            account key. Defaults to None.
        file_extractor (Optional[Dict[str, BaseReader]]): A mapping of file
            extension to a BaseReader class that specifies how to convert that
            file to text. See `SimpleDirectoryReader` for more details.
    """

    drive_id: Optional[str] = None
    folder_id: Optional[str] = None
    file_ids: Optional[List[str]] = None
    query_string: Optional[str] = None
    client_config: Optional[dict] = None
    authorized_user_info: Optional[dict] = None
    service_account_key: Optional[dict] = None
    token_path: Optional[str] = None
    file_extractor: Optional[Dict[str, Union[str, BaseReader]]] = Field(
        default=None, exclude=True
    )

    _is_cloud: bool = PrivateAttr(default=False)
    _creds: Credentials = PrivateAttr()
    _mimetypes: dict = PrivateAttr()

    def __init__(
        self,
        drive_id: Optional[str] = None,
        folder_id: Optional[str] = None,
        file_ids: Optional[List[str]] = None,
        query_string: Optional[str] = None,
        is_cloud: Optional[bool] = False,
        credentials_path: str = "credentials.json",
        token_path: str = "token.json",
        service_account_key_path: str = "service_account_key.json",
        client_config: Optional[dict] = None,
        authorized_user_info: Optional[dict] = None,
        service_account_key: Optional[dict] = None,
        file_extractor: Optional[Dict[str, Union[str, BaseReader]]] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize with parameters."""
        # Read the file contents so they can be serialized and stored.
        if client_config is None and os.path.isfile(credentials_path):
            with open(credentials_path, encoding="utf-8") as json_file:
                client_config = json.load(json_file)

        if authorized_user_info is None and os.path.isfile(token_path):
            with open(token_path, encoding="utf-8") as json_file:
                authorized_user_info = json.load(json_file)

        if service_account_key is None and os.path.isfile(service_account_key_path):
            with open(service_account_key_path, encoding="utf-8") as json_file:
                service_account_key = json.load(json_file)

        if (
            client_config is None
            and service_account_key is None
            and authorized_user_info is None
        ):
            raise ValueError(
                "Must specify `client_config` or `service_account_key` or `authorized_user_info`."
            )

        super().__init__(
            drive_id=drive_id,
            folder_id=folder_id,
            file_ids=file_ids,
            query_string=query_string,
            client_config=client_config,
            authorized_user_info=authorized_user_info,
            service_account_key=service_account_key,
            token_path=token_path,
            file_extractor=file_extractor,
            **kwargs,
        )

        self._creds = None
        self._is_cloud = is_cloud
        # Download Google Docs/Slides/Sheets as actual files
        # See https://developers.google.com/drive/v3/web/mime-types
        self._mimetypes = {
            "application/vnd.google-apps.document": {
                "mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
                "extension": ".docx",
            },
            "application/vnd.google-apps.spreadsheet": {
                "mimetype": (
                    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                ),
                "extension": ".xlsx",
            },
            "application/vnd.google-apps.presentation": {
                "mimetype": "application/vnd.openxmlformats-officedocument.presentationml.presentation",
                "extension": ".pptx",
            },
        }

    @classmethod
    def class_name(cls) -> str:
        return "GoogleDriveReader"

    def _get_credentials(self) -> Tuple[Credentials]:
        """Authenticate with Google and save credentials.
        Download the service_account_key.json file with these instructions: https://cloud.google.com/iam/docs/keys-create-delete.

        IMPORTANT: Make sure to share the folders / files with the service account. Otherwise it will fail to read the docs

        Returns:
            credentials
        """
        # First, we need the Google API credentials for the app
        creds = None

        if self.authorized_user_info is not None:
            creds = Credentials.from_authorized_user_info(
                self.authorized_user_info, SCOPES
            )
        elif self.service_account_key is not None:
            return service_account.Credentials.from_service_account_info(
                self.service_account_key, scopes=SCOPES
            )

        # If there are no (valid) credentials available, let the user log in.
        if not creds or not creds.valid:
            if creds and creds.expired and creds.refresh_token:
                creds.refresh(Request())
            else:
                flow = InstalledAppFlow.from_client_config(self.client_config, SCOPES)
                creds = flow.run_local_server(port=0)

            # Save the credentials for the next run
            if not self._is_cloud:
                with open(self.token_path, "w", encoding="utf-8") as token:
                    token.write(creds.to_json())

        return creds

    def _get_drive_link(self, file_id: str) -> str:
        return f"https://drive.google.com/file/d/{file_id}/view"

    def _get_fileids_meta(
        self,
        drive_id: Optional[str] = None,
        folder_id: Optional[str] = None,
        file_id: Optional[str] = None,
        mime_types: Optional[List[str]] = None,
        query_string: Optional[str] = None,
    ) -> List[List[str]]:
        """Get file ids present in folder/ file id
        Args:
            drive_id: Drive id of the shared drive in google drive.
            folder_id: folder id of the folder in google drive.
            file_id: file id of the file in google drive
            mime_types: The mimeTypes you want to allow e.g.: "application/vnd.google-apps.document"
            query_string: A more generic query string to filter the documents, e.g. "name contains 'test'".

        Returns:
            metadata: List of metadata of filde ids.
        """
        from googleapiclient.discovery import build

        try:
            service = build("drive", "v3", credentials=self._creds)
            fileids_meta = []
            if folder_id:
                folder_mime_type = "application/vnd.google-apps.folder"
                query = "('" + folder_id + "' in parents)"

                # Add mimeType filter to query
                if mime_types:
                    if folder_mime_type not in mime_types:
                        mime_types.append(folder_mime_type)  # keep the recursiveness
                    mime_query = " or ".join(
                        [f"mimeType='{mime_type}'" for mime_type in mime_types]
                    )
                    query += f" and ({mime_query})"

                # Add query string filter
                if query_string:
                    # to keep the recursiveness, we need to add folder_mime_type to the mime_types
                    query += (
                        f" and ((mimeType='{folder_mime_type}') or ({query_string}))"
                    )

                items = []
                page_token = ""
                # get files taking into account that the results are paginated
                while True:
                    if drive_id:
                        results = (
                            service.files()
                            .list(
                                q=query,
                                driveId=drive_id,
                                corpora="drive",
                                includeItemsFromAllDrives=True,
                                supportsAllDrives=True,
                                fields="*",
                                pageToken=page_token,
                            )
                            .execute()
                        )
                    else:
                        results = (
                            service.files()
                            .list(
                                q=query,
                                includeItemsFromAllDrives=True,
                                supportsAllDrives=True,
                                fields="*",
                                pageToken=page_token,
                            )
                            .execute()
                        )
                    items.extend(results.get("files", []))
                    page_token = results.get("nextPageToken", None)
                    if page_token is None:
                        break

                for item in items:
                    if item["mimeType"] == folder_mime_type:
                        if drive_id:
                            fileids_meta.extend(
                                self._get_fileids_meta(
                                    drive_id=drive_id,
                                    folder_id=item["id"],
                                    mime_types=mime_types,
                                    query_string=query_string,
                                )
                            )
                        else:
                            fileids_meta.extend(
                                self._get_fileids_meta(
                                    folder_id=item["id"],
                                    mime_types=mime_types,
                                    query_string=query_string,
                                )
                            )
                    else:
                        # Check if file doesn't belong to a Shared Drive. "owners" doesn't exist in a Shared Drive
                        is_shared_drive = "driveId" in item
                        author = (
                            item["owners"][0]["displayName"]
                            if not is_shared_drive
                            else "Shared Drive"
                        )

                        fileids_meta.append(
                            (
                                item["id"],
                                author,
                                item["name"],
                                item["mimeType"],
                                item["createdTime"],
                                item["modifiedTime"],
                                self._get_drive_link(item["id"]),
                            )
                        )
            else:
                # Get the file details
                file = (
                    service.files()
                    .get(fileId=file_id, supportsAllDrives=True, fields="*")
                    .execute()
                )
                # Get metadata of the file
                # Check if file doesn't belong to a Shared Drive. "owners" doesn't exist in a Shared Drive
                is_shared_drive = "driveId" in file
                author = (
                    file["owners"][0]["displayName"]
                    if not is_shared_drive
                    else "Shared Drive"
                )

                fileids_meta.append(
                    (
                        file["id"],
                        author,
                        file["name"],
                        file["mimeType"],
                        file["createdTime"],
                        file["modifiedTime"],
                        self._get_drive_link(file["id"]),
                    )
                )
            return fileids_meta

        except Exception as e:
            logger.error(
                f"An error occurred while getting fileids metadata: {e}", exc_info=True
            )

    def _download_file(self, fileid: str, filename: str) -> str:
        """Download the file with fileid and filename
        Args:
            fileid: file id of the file in google drive
            filename: filename with which it will be downloaded
        Returns:
            The downloaded filename, which which may have a new extension.
        """
        from io import BytesIO

        from googleapiclient.discovery import build
        from googleapiclient.http import MediaIoBaseDownload

        try:
            # Get file details
            service = build("drive", "v3", credentials=self._creds)
            file = service.files().get(fileId=fileid, supportsAllDrives=True).execute()

            if file["mimeType"] in self._mimetypes:
                download_mimetype = self._mimetypes[file["mimeType"]]["mimetype"]
                download_extension = self._mimetypes[file["mimeType"]]["extension"]
                new_file_name = filename + download_extension

                # Download and convert file
                request = service.files().export_media(
                    fileId=fileid, mimeType=download_mimetype
                )
            else:
                new_file_name = filename

                # Download file without conversion
                request = service.files().get_media(fileId=fileid)

            # Download file data
            file_data = BytesIO()
            downloader = MediaIoBaseDownload(file_data, request)
            done = False

            while not done:
                status, done = downloader.next_chunk()

            # Save the downloaded file
            with open(new_file_name, "wb") as f:
                f.write(file_data.getvalue())

            return new_file_name
        except Exception as e:
            logger.error(
                f"An error occurred while downloading file: {e}", exc_info=True
            )

    def _load_data_fileids_meta(self, fileids_meta: List[List[str]]) -> List[Document]:
        """Load data from fileids metadata
        Args:
            fileids_meta: metadata of fileids in google drive.

        Returns:
            Lis[Document]: List of Document of data present in fileids.
        """
        try:
            with tempfile.TemporaryDirectory() as temp_dir:

                def get_metadata(filename):
                    return metadata[filename]

                temp_dir = Path(temp_dir)
                metadata = {}

                for fileid_meta in fileids_meta:
                    # Download files and name them with their fileid
                    fileid = fileid_meta[0]
                    filepath = os.path.join(temp_dir, fileid)
                    final_filepath = self._download_file(fileid, filepath)

                    # Add metadata of the file to metadata dictionary
                    metadata[final_filepath] = {
                        "file id": fileid_meta[0],
                        "author": fileid_meta[1],
                        "file name": fileid_meta[2],
                        "mime type": fileid_meta[3],
                        "created at": fileid_meta[4],
                        "modified at": fileid_meta[5],
                    }
                loader = SimpleDirectoryReader(
                    temp_dir,
                    file_extractor=self.file_extractor,
                    file_metadata=get_metadata,
                )
                documents = loader.load_data()
                for doc in documents:
                    doc.id_ = doc.metadata.get("file id", doc.id_)

            return documents
        except Exception as e:
            logger.error(
                f"An error occurred while loading data from fileids meta: {e}",
                exc_info=True,
            )

    def _load_from_file_ids(
        self,
        drive_id: Optional[str],
        file_ids: List[str],
        mime_types: Optional[List[str]],
        query_string: Optional[str],
    ) -> List[Document]:
        """Load data from file ids
        Args:
            file_ids: File ids of the files in google drive.
            mime_types: The mimeTypes you want to allow e.g.: "application/vnd.google-apps.document"
            query_string: List of query strings to filter the documents, e.g. "name contains 'test'".

        Returns:
            Document: List of Documents of text.
        """
        try:
            fileids_meta = []
            for file_id in file_ids:
                fileids_meta.extend(
                    self._get_fileids_meta(
                        drive_id=drive_id,
                        file_id=file_id,
                        mime_types=mime_types,
                        query_string=query_string,
                    )
                )
            return self._load_data_fileids_meta(fileids_meta)
        except Exception as e:
            logger.error(
                f"An error occurred while loading with fileid: {e}", exc_info=True
            )

    def _load_from_folder(
        self,
        drive_id: Optional[str],
        folder_id: str,
        mime_types: Optional[List[str]],
        query_string: Optional[str],
    ) -> List[Document]:
        """Load data from folder_id.

        Args:
            drive_id: Drive id of the shared drive in google drive.
            folder_id: folder id of the folder in google drive.
            mime_types: The mimeTypes you want to allow e.g.: "application/vnd.google-apps.document"
            query_string: A more generic query string to filter the documents, e.g. "name contains 'test'".

        Returns:
            Document: List of Documents of text.
        """
        try:
            fileids_meta = self._get_fileids_meta(
                drive_id=drive_id,
                folder_id=folder_id,
                mime_types=mime_types,
                query_string=query_string,
            )
            return self._load_data_fileids_meta(fileids_meta)
        except Exception as e:
            logger.error(
                f"An error occurred while loading from folder: {e}", exc_info=True
            )

    def load_data(
        self,
        drive_id: Optional[str] = None,
        folder_id: Optional[str] = None,
        file_ids: Optional[List[str]] = None,
        mime_types: Optional[List[str]] = None,  # Deprecated
        query_string: Optional[str] = None,
    ) -> List[Document]:
        """Load data from the folder id or file ids.

        Args:
            drive_id: Drive id of the shared drive in google drive.
            folder_id: Folder id of the folder in google drive.
            file_ids: File ids of the files in google drive.
            mime_types: The mimeTypes you want to allow e.g.: "application/vnd.google-apps.document"
            query_string: A more generic query string to filter the documents, e.g. "name contains 'test'".
                It gives more flexibility to filter the documents. More info: https://developers.google.com/drive/api/v3/search-files

        Returns:
            List[Document]: A list of documents.
        """
        self._creds = self._get_credentials()

        # If no arguments are provided to load_data, default to the object attributes
        if drive_id is None:
            drive_id = self.drive_id
        if folder_id is None:
            folder_id = self.folder_id
        if file_ids is None:
            file_ids = self.file_ids
        if query_string is None:
            query_string = self.query_string

        if folder_id:
            return self._load_from_folder(drive_id, folder_id, mime_types, query_string)
        elif file_ids:
            return self._load_from_file_ids(
                drive_id, file_ids, mime_types, query_string
            )
        else:
            logger.warning("Either 'folder_id' or 'file_ids' must be provided.")
            return []

    def list_resources(self, **kwargs) -> List[str]:
        """List resources in the specified Google Drive folder or files."""
        self._creds = self._get_credentials()

        drive_id = kwargs.get("drive_id", self.drive_id)
        folder_id = kwargs.get("folder_id", self.folder_id)
        file_ids = kwargs.get("file_ids", self.file_ids)
        query_string = kwargs.get("query_string", self.query_string)

        if folder_id:
            fileids_meta = self._get_fileids_meta(
                drive_id, folder_id, query_string=query_string
            )
        elif file_ids:
            fileids_meta = []
            for file_id in file_ids:
                fileids_meta.extend(
                    self._get_fileids_meta(
                        drive_id, file_id=file_id, query_string=query_string
                    )
                )
        else:
            raise ValueError("Either 'folder_id' or 'file_ids' must be provided.")

        return [meta[0] for meta in fileids_meta]  # Return list of file IDs

    def get_resource_info(self, resource_id: str, **kwargs) -> Dict:
        """Get information about a specific Google Drive resource."""
        self._creds = self._get_credentials()

        fileids_meta = self._get_fileids_meta(file_id=resource_id)
        if not fileids_meta:
            raise ValueError(f"Resource with ID {resource_id} not found.")

        meta = fileids_meta[0]
        return {
            "file_path": meta[2],
            "file_size": None,
            "last_modified_date": meta[5],
            "content_hash": None,
            "content_type": meta[3],
            "author": meta[1],
            "created_date": meta[4],
            "drive_link": meta[6],
        }

    def load_resource(self, resource_id: str, **kwargs) -> List[Document]:
        """Load a specific resource from Google Drive."""
        return self._load_from_file_ids(
            self.drive_id, [resource_id], None, self.query_string
        )

    def read_file_content(self, file_path: Union[str, Path], **kwargs) -> bytes:
        """Read the content of a specific file from Google Drive."""
        self._creds = self._get_credentials()

        with tempfile.TemporaryDirectory() as temp_dir:
            temp_file = os.path.join(temp_dir, "temp_file")
            downloaded_file = self._download_file(file_path, temp_file)
            with open(downloaded_file, "rb") as file:
                return file.read()

load_data #

load_data(drive_id: Optional[str] = None, folder_id: Optional[str] = None, file_ids: Optional[List[str]] = None, mime_types: Optional[List[str]] = None, query_string: Optional[str] = None) -> List[Document]

Load data from the folder id or file ids.

Parameters:

Name Type Description Default
drive_id Optional[str]

Drive id of the shared drive in google drive.

None
folder_id Optional[str]

Folder id of the folder in google drive.

None
file_ids Optional[List[str]]

File ids of the files in google drive.

None
mime_types Optional[List[str]]

The mimeTypes you want to allow e.g.: "application/vnd.google-apps.document"

None
query_string Optional[str]

A more generic query string to filter the documents, e.g. "name contains 'test'". It gives more flexibility to filter the documents. More info: https://developers.google.com/drive/api/v3/search-files

None

Returns:

Type Description
List[Document]

List[Document]: A list of documents.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/drive/base.py
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def load_data(
    self,
    drive_id: Optional[str] = None,
    folder_id: Optional[str] = None,
    file_ids: Optional[List[str]] = None,
    mime_types: Optional[List[str]] = None,  # Deprecated
    query_string: Optional[str] = None,
) -> List[Document]:
    """Load data from the folder id or file ids.

    Args:
        drive_id: Drive id of the shared drive in google drive.
        folder_id: Folder id of the folder in google drive.
        file_ids: File ids of the files in google drive.
        mime_types: The mimeTypes you want to allow e.g.: "application/vnd.google-apps.document"
        query_string: A more generic query string to filter the documents, e.g. "name contains 'test'".
            It gives more flexibility to filter the documents. More info: https://developers.google.com/drive/api/v3/search-files

    Returns:
        List[Document]: A list of documents.
    """
    self._creds = self._get_credentials()

    # If no arguments are provided to load_data, default to the object attributes
    if drive_id is None:
        drive_id = self.drive_id
    if folder_id is None:
        folder_id = self.folder_id
    if file_ids is None:
        file_ids = self.file_ids
    if query_string is None:
        query_string = self.query_string

    if folder_id:
        return self._load_from_folder(drive_id, folder_id, mime_types, query_string)
    elif file_ids:
        return self._load_from_file_ids(
            drive_id, file_ids, mime_types, query_string
        )
    else:
        logger.warning("Either 'folder_id' or 'file_ids' must be provided.")
        return []

list_resources #

list_resources(**kwargs) -> List[str]

List resources in the specified Google Drive folder or files.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/drive/base.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
def list_resources(self, **kwargs) -> List[str]:
    """List resources in the specified Google Drive folder or files."""
    self._creds = self._get_credentials()

    drive_id = kwargs.get("drive_id", self.drive_id)
    folder_id = kwargs.get("folder_id", self.folder_id)
    file_ids = kwargs.get("file_ids", self.file_ids)
    query_string = kwargs.get("query_string", self.query_string)

    if folder_id:
        fileids_meta = self._get_fileids_meta(
            drive_id, folder_id, query_string=query_string
        )
    elif file_ids:
        fileids_meta = []
        for file_id in file_ids:
            fileids_meta.extend(
                self._get_fileids_meta(
                    drive_id, file_id=file_id, query_string=query_string
                )
            )
    else:
        raise ValueError("Either 'folder_id' or 'file_ids' must be provided.")

    return [meta[0] for meta in fileids_meta]  # Return list of file IDs

get_resource_info #

get_resource_info(resource_id: str, **kwargs) -> Dict

Get information about a specific Google Drive resource.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/drive/base.py
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def get_resource_info(self, resource_id: str, **kwargs) -> Dict:
    """Get information about a specific Google Drive resource."""
    self._creds = self._get_credentials()

    fileids_meta = self._get_fileids_meta(file_id=resource_id)
    if not fileids_meta:
        raise ValueError(f"Resource with ID {resource_id} not found.")

    meta = fileids_meta[0]
    return {
        "file_path": meta[2],
        "file_size": None,
        "last_modified_date": meta[5],
        "content_hash": None,
        "content_type": meta[3],
        "author": meta[1],
        "created_date": meta[4],
        "drive_link": meta[6],
    }

load_resource #

load_resource(resource_id: str, **kwargs) -> List[Document]

Load a specific resource from Google Drive.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/drive/base.py
600
601
602
603
604
def load_resource(self, resource_id: str, **kwargs) -> List[Document]:
    """Load a specific resource from Google Drive."""
    return self._load_from_file_ids(
        self.drive_id, [resource_id], None, self.query_string
    )

read_file_content #

read_file_content(file_path: Union[str, Path], **kwargs) -> bytes

Read the content of a specific file from Google Drive.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/drive/base.py
606
607
608
609
610
611
612
613
614
def read_file_content(self, file_path: Union[str, Path], **kwargs) -> bytes:
    """Read the content of a specific file from Google Drive."""
    self._creds = self._get_credentials()

    with tempfile.TemporaryDirectory() as temp_dir:
        temp_file = os.path.join(temp_dir, "temp_file")
        downloaded_file = self._download_file(file_path, temp_file)
        with open(downloaded_file, "rb") as file:
            return file.read()

GoogleKeepReader #

Bases: BaseReader

Google Keep reader.

Reads notes from Google Keep

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/keep/base.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class GoogleKeepReader(BaseReader):
    """Google Keep reader.

    Reads notes from Google Keep

    """

    def load_data(self, document_ids: List[str]) -> List[Document]:
        """Load data from the document_ids.

        Args:
            document_ids (List[str]): a list of note ids.
        """
        keep = self._get_keep()

        if document_ids is None:
            raise ValueError('Must specify a "document_ids" in `load_kwargs`.')

        results = []
        for note_id in document_ids:
            note = keep.get(note_id)
            if note is None:
                raise ValueError(f"Note with id {note_id} not found.")
            text = f"Title: {note.title}\nContent: {note.text}"
            results.append(Document(text=text, extra_info={"note_id": note_id}))
        return results

    def load_all_notes(self) -> List[Document]:
        """Load all notes from Google Keep."""
        keep = self._get_keep()

        notes = keep.all()
        results = []
        for note in notes:
            text = f"Title: {note.title}\nContent: {note.text}"
            results.append(Document(text=text, extra_info={"note_id": note.id}))
        return results

    def _get_keep(self) -> Any:
        import gkeepapi

        """Get a Google Keep object with login."""
        # Read username and password from keep_credentials.json
        if os.path.exists("keep_credentials.json"):
            with open("keep_credentials.json") as f:
                credentials = json.load(f)
        else:
            raise RuntimeError("Failed to load keep_credentials.json.")

        keep = gkeepapi.Keep()

        success = keep.login(credentials["username"], credentials["password"])
        if not success:
            raise RuntimeError("Failed to login to Google Keep.")

        return keep

load_data #

load_data(document_ids: List[str]) -> List[Document]

Load data from the document_ids.

Parameters:

Name Type Description Default
document_ids List[str]

a list of note ids.

required
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/keep/base.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def load_data(self, document_ids: List[str]) -> List[Document]:
    """Load data from the document_ids.

    Args:
        document_ids (List[str]): a list of note ids.
    """
    keep = self._get_keep()

    if document_ids is None:
        raise ValueError('Must specify a "document_ids" in `load_kwargs`.')

    results = []
    for note_id in document_ids:
        note = keep.get(note_id)
        if note is None:
            raise ValueError(f"Note with id {note_id} not found.")
        text = f"Title: {note.title}\nContent: {note.text}"
        results.append(Document(text=text, extra_info={"note_id": note_id}))
    return results

load_all_notes #

load_all_notes() -> List[Document]

Load all notes from Google Keep.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/keep/base.py
38
39
40
41
42
43
44
45
46
47
def load_all_notes(self) -> List[Document]:
    """Load all notes from Google Keep."""
    keep = self._get_keep()

    notes = keep.all()
    results = []
    for note in notes:
        text = f"Title: {note.title}\nContent: {note.text}"
        results.append(Document(text=text, extra_info={"note_id": note.id}))
    return results

GoogleMapsTextSearchReader #

Bases: BaseReader

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/maps/base.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
class GoogleMapsTextSearchReader(BaseReader):
    def __init__(
        self,
        api_key: Optional[str] = None,
    ):
        self.api_key = api_key or os.getenv("GOOGLE_MAPS_API_KEY")
        if not self.api_key:
            raise ValueError(
                "API key must be provided or set in the environment variables as 'GOOGLE_MAPS_API_KEY'"
            )

    def load_data(
        self,
        text: str,
        number_of_results: Optional[int] = DEFAULT_NUMBER_OF_RESULTS,
    ) -> List[Document]:
        """Load data from Google Maps.

        Args:
            text (str): the text to search for.
            number_of_results (Optional[int]): the number of results to return. Defaults to 20.
        """
        response = self._search_text_request(text, MAX_RESULTS_PER_PAGE)
        documents = []
        while "nextPageToken" in response:
            next_page_token = response["nextPageToken"]
            places = response.get("places", [])
            if len(places) == 0:
                break
            for place in places:
                formatted_address = place["formattedAddress"]
                average_rating = place["rating"]
                display_name = place["displayName"]
                if isinstance(display_name, dict):
                    display_name = display_name["text"]
                number_of_ratings = place["userRatingCount"]
                reviews = []
                for review in place["reviews"]:
                    review_text = review["text"]["text"]
                    author_name = review["authorAttribution"]["displayName"]
                    relative_publish_time = review["relativePublishTimeDescription"]
                    rating = review["rating"]
                    reviews.append(
                        Review(
                            author_name=author_name,
                            rating=rating,
                            text=review_text,
                            relative_publish_time=relative_publish_time,
                        )
                    )

                place = Place(
                    reviews=reviews,
                    address=formatted_address,
                    average_rating=average_rating,
                    display_name=display_name,
                    number_of_ratings=number_of_ratings,
                )
                reviews_text = "\n".join(
                    [
                        f"Author: {review.author_name}, Rating: {review.rating}, Text: {review.text}, Relative Publish Time: {review.relative_publish_time}"
                        for review in reviews
                    ]
                )
                place_text = f"Place: {place.display_name}, Address: {place.address}, Average Rating: {place.average_rating}, Number of Ratings: {place.number_of_ratings}"
                document_text = f"{place_text}\n{reviews_text}"

                if len(documents) == number_of_results:
                    return documents

                documents.append(Document(text=document_text, extra_info=place.dict()))
            response = self._search_text_request(
                text, MAX_RESULTS_PER_PAGE, next_page_token
            )

        return documents

    def lazy_load_data(self, *args: Any, **load_kwargs: Any) -> Iterable[Document]:
        """Load data lazily from Google Maps."""
        yield from self.load_data(*args, **load_kwargs)

    def _search_text_request(
        self, text, number_of_results, next_page_token: Optional[str] = None
    ) -> dict:
        """
        Send a request to the Google Maps Places API to search for text.

        Args:
            text (str): the text to search for.
            number_of_results (int): the number of results to return.
            next_page_token (Optional[str]): the next page token to get the next page of results.
        """
        headers = {
            "Content-Type": "application/json",
            "X-Goog-Api-Key": self.api_key,
            "X-Goog-FieldMask": FIELD_MASK,
        }
        payload = json.dumps(
            {
                "textQuery": text,
                "pageSize": number_of_results,
                "pageToken": next_page_token,
            }
        )
        response = requests.post(SEARCH_TEXT_BASE_URL, headers=headers, data=payload)
        response.raise_for_status()
        return response.json()

load_data #

load_data(text: str, number_of_results: Optional[int] = DEFAULT_NUMBER_OF_RESULTS) -> List[Document]

Load data from Google Maps.

Parameters:

Name Type Description Default
text str

the text to search for.

required
number_of_results Optional[int]

the number of results to return. Defaults to 20.

DEFAULT_NUMBER_OF_RESULTS
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/maps/base.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
def load_data(
    self,
    text: str,
    number_of_results: Optional[int] = DEFAULT_NUMBER_OF_RESULTS,
) -> List[Document]:
    """Load data from Google Maps.

    Args:
        text (str): the text to search for.
        number_of_results (Optional[int]): the number of results to return. Defaults to 20.
    """
    response = self._search_text_request(text, MAX_RESULTS_PER_PAGE)
    documents = []
    while "nextPageToken" in response:
        next_page_token = response["nextPageToken"]
        places = response.get("places", [])
        if len(places) == 0:
            break
        for place in places:
            formatted_address = place["formattedAddress"]
            average_rating = place["rating"]
            display_name = place["displayName"]
            if isinstance(display_name, dict):
                display_name = display_name["text"]
            number_of_ratings = place["userRatingCount"]
            reviews = []
            for review in place["reviews"]:
                review_text = review["text"]["text"]
                author_name = review["authorAttribution"]["displayName"]
                relative_publish_time = review["relativePublishTimeDescription"]
                rating = review["rating"]
                reviews.append(
                    Review(
                        author_name=author_name,
                        rating=rating,
                        text=review_text,
                        relative_publish_time=relative_publish_time,
                    )
                )

            place = Place(
                reviews=reviews,
                address=formatted_address,
                average_rating=average_rating,
                display_name=display_name,
                number_of_ratings=number_of_ratings,
            )
            reviews_text = "\n".join(
                [
                    f"Author: {review.author_name}, Rating: {review.rating}, Text: {review.text}, Relative Publish Time: {review.relative_publish_time}"
                    for review in reviews
                ]
            )
            place_text = f"Place: {place.display_name}, Address: {place.address}, Average Rating: {place.average_rating}, Number of Ratings: {place.number_of_ratings}"
            document_text = f"{place_text}\n{reviews_text}"

            if len(documents) == number_of_results:
                return documents

            documents.append(Document(text=document_text, extra_info=place.dict()))
        response = self._search_text_request(
            text, MAX_RESULTS_PER_PAGE, next_page_token
        )

    return documents

lazy_load_data #

lazy_load_data(*args: Any, **load_kwargs: Any) -> Iterable[Document]

Load data lazily from Google Maps.

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/maps/base.py
111
112
113
def lazy_load_data(self, *args: Any, **load_kwargs: Any) -> Iterable[Document]:
    """Load data lazily from Google Maps."""
    yield from self.load_data(*args, **load_kwargs)

GoogleSheetsReader #

Bases: BasePydanticReader

Google Sheets reader.

Reads a sheet as TSV from Google Sheets

Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/sheets/base.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class GoogleSheetsReader(BasePydanticReader):
    """Google Sheets reader.

    Reads a sheet as TSV from Google Sheets

    """

    is_remote: bool = True

    def __init__(self) -> None:
        """Initialize with parameters."""
        try:
            import google  # noqa
            import google_auth_oauthlib  # noqa
            import googleapiclient  # noqa
        except ImportError:
            raise ImportError(
                "`google_auth_oauthlib`, `googleapiclient` and `google` "
                "must be installed to use the GoogleSheetsReader.\n"
                "Please run `pip install --upgrade google-api-python-client "
                "google-auth-httplib2 google-auth-oauthlib`."
            )

    @classmethod
    def class_name(cls) -> str:
        return "GoogleSheetsReader"

    def load_data(self, spreadsheet_ids: List[str]) -> List[Document]:
        """Load data from the input directory.

        Args:
            spreadsheet_ids (List[str]): a list of document ids.
        """
        if spreadsheet_ids is None:
            raise ValueError('Must specify a "spreadsheet_ids" in `load_kwargs`.')

        results = []
        for spreadsheet_id in spreadsheet_ids:
            sheet = self._load_sheet(spreadsheet_id)
            results.append(
                Document(
                    id_=spreadsheet_id,
                    text=sheet,
                    metadata={"spreadsheet_id": spreadsheet_id},
                )
            )
        return results

    def load_data_in_pandas(self, spreadsheet_ids: List[str]) -> List[pd.DataFrame]:
        """Load data from the input directory.

        Args:
            spreadsheet_ids (List[str]): a list of document ids.
        """
        if spreadsheet_ids is None:
            raise ValueError('Must specify a "spreadsheet_ids" in `load_kwargs`.')

        results = []
        for spreadsheet_id in spreadsheet_ids:
            dataframes = self._load_sheet_in_pandas(spreadsheet_id)
            results.extend(dataframes)
        return results

    def _load_sheet(self, spreadsheet_id: str) -> str:
        """Load a sheet from Google Sheets.

        Args:
            spreadsheet_id: the sheet id.

        Returns:
            The sheet data.
        """
        credentials = self._get_credentials()
        sheets_service = discovery.build("sheets", "v4", credentials=credentials)
        spreadsheet_data = (
            sheets_service.spreadsheets().get(spreadsheetId=spreadsheet_id).execute()
        )
        sheets = spreadsheet_data.get("sheets")
        sheet_text = ""

        for sheet in sheets:
            properties = sheet.get("properties")
            title = properties.get("title")
            sheet_text += title + "\n"
            grid_props = properties.get("gridProperties")
            rows = grid_props.get("rowCount")
            cols = grid_props.get("columnCount")
            range_pattern = f"R1C1:R{rows}C{cols}"
            response = (
                sheets_service.spreadsheets()
                .values()
                .get(spreadsheetId=spreadsheet_id, range=range_pattern)
                .execute()
            )
            sheet_text += (
                "\n".join("\t".join(row) for row in response.get("values", [])) + "\n"
            )
        return sheet_text

    def _load_sheet_in_pandas(self, spreadsheet_id: str) -> List[pd.DataFrame]:
        """Load a sheet from Google Sheets.

        Args:
            spreadsheet_id: the sheet id.
            sheet_name: the sheet name.

        Returns:
            The sheet data.
        """
        credentials = self._get_credentials()
        sheets_service = discovery.build("sheets", "v4", credentials=credentials)
        sheet = sheets_service.spreadsheets()
        spreadsheet_data = sheet.get(spreadsheetId=spreadsheet_id).execute()
        sheets = spreadsheet_data.get("sheets")
        dataframes = []
        for sheet in sheets:
            properties = sheet.get("properties")
            title = properties.get("title")
            grid_props = properties.get("gridProperties")
            rows = grid_props.get("rowCount")
            cols = grid_props.get("columnCount")
            range_pattern = f"{title}!R1C1:R{rows}C{cols}"
            response = (
                sheets_service.spreadsheets()
                .values()
                .get(spreadsheetId=spreadsheet_id, range=range_pattern)
                .execute()
            )
            values = response.get("values", [])
            if not values:
                print(f"No data found in {title}")
            else:
                df = pd.DataFrame(values[1:], columns=values[0])
                dataframes.append(df)
        return dataframes

    def _get_credentials(self) -> Any:
        """Get valid user credentials from storage.

        The file token.json stores the user's access and refresh tokens, and is
        created automatically when the authorization flow completes for the first
        time.

        Returns:
            Credentials, the obtained credential.
        """
        creds = None
        if os.path.exists("token.json"):
            creds = Credentials.from_authorized_user_file("token.json", SCOPES)
        # If there are no (valid) credentials available, let the user log in.
        if not creds or not creds.valid:
            if creds and creds.expired and creds.refresh_token:
                creds.refresh(Request())
            else:
                flow = InstalledAppFlow.from_client_secrets_file(
                    "credentials.json", SCOPES
                )
                creds = flow.run_local_server(port=0)
            # Save the credentials for the next run
            with open("token.json", "w") as token:
                token.write(creds.to_json())

        return creds

load_data #

load_data(spreadsheet_ids: List[str]) -> List[Document]

Load data from the input directory.

Parameters:

Name Type Description Default
spreadsheet_ids List[str]

a list of document ids.

required
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/sheets/base.py
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def load_data(self, spreadsheet_ids: List[str]) -> List[Document]:
    """Load data from the input directory.

    Args:
        spreadsheet_ids (List[str]): a list of document ids.
    """
    if spreadsheet_ids is None:
        raise ValueError('Must specify a "spreadsheet_ids" in `load_kwargs`.')

    results = []
    for spreadsheet_id in spreadsheet_ids:
        sheet = self._load_sheet(spreadsheet_id)
        results.append(
            Document(
                id_=spreadsheet_id,
                text=sheet,
                metadata={"spreadsheet_id": spreadsheet_id},
            )
        )
    return results

load_data_in_pandas #

load_data_in_pandas(spreadsheet_ids: List[str]) -> List[DataFrame]

Load data from the input directory.

Parameters:

Name Type Description Default
spreadsheet_ids List[str]

a list of document ids.

required
Source code in llama-index-integrations/readers/llama-index-readers-google/llama_index/readers/google/sheets/base.py
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def load_data_in_pandas(self, spreadsheet_ids: List[str]) -> List[pd.DataFrame]:
    """Load data from the input directory.

    Args:
        spreadsheet_ids (List[str]): a list of document ids.
    """
    if spreadsheet_ids is None:
        raise ValueError('Must specify a "spreadsheet_ids" in `load_kwargs`.')

    results = []
    for spreadsheet_id in spreadsheet_ids:
        dataframes = self._load_sheet_in_pandas(spreadsheet_id)
        results.extend(dataframes)
    return results