Skip to content

Knowledge graph

KnowledgeGraphQueryEngine #

Bases: BaseQueryEngine

Knowledge graph query engine.

Query engine to call a knowledge graph.

Parameters:

Name Type Description Default
storage_context Optional[StorageContext]

A storage context to use.

None
refresh_schema bool

Whether to refresh the schema.

False
verbose bool

Whether to print intermediate results.

False
response_synthesizer Optional[BaseSynthesizer]

A BaseSynthesizer object.

None
**kwargs Any

Additional keyword arguments.

{}
Source code in llama-index-core/llama_index/core/query_engine/knowledge_graph_query_engine.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
@deprecated.deprecated(
    version="0.10.53",
    reason=(
        "KnowledgeGraphQueryEngine is deprecated. It is recommended to use "
        "the PropertyGraphIndex and associated retrievers instead."
    ),
)
class KnowledgeGraphQueryEngine(BaseQueryEngine):
    """Knowledge graph query engine.

    Query engine to call a knowledge graph.

    Args:
        storage_context (Optional[StorageContext]): A storage context to use.
        refresh_schema (bool): Whether to refresh the schema.
        verbose (bool): Whether to print intermediate results.
        response_synthesizer (Optional[BaseSynthesizer]):
            A BaseSynthesizer object.
        **kwargs: Additional keyword arguments.

    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        storage_context: Optional[StorageContext] = None,
        graph_query_synthesis_prompt: Optional[BasePromptTemplate] = None,
        graph_response_answer_prompt: Optional[BasePromptTemplate] = None,
        refresh_schema: bool = False,
        verbose: bool = False,
        response_synthesizer: Optional[BaseSynthesizer] = None,
        **kwargs: Any,
    ):
        # Ensure that we have a graph store
        assert storage_context is not None, "Must provide a storage context."
        assert (
            storage_context.graph_store is not None
        ), "Must provide a graph store in the storage context."
        self._storage_context = storage_context
        self.graph_store = storage_context.graph_store

        self._llm = llm or Settings.llm

        # Get Graph schema
        self._graph_schema = self.graph_store.get_schema(refresh=refresh_schema)

        # Get graph store query synthesis prompt
        self._graph_query_synthesis_prompt = graph_query_synthesis_prompt

        self._graph_response_answer_prompt = (
            graph_response_answer_prompt or DEFAULT_KG_RESPONSE_ANSWER_PROMPT
        )
        self._verbose = verbose
        callback_manager = Settings.callback_manager
        self._response_synthesizer = response_synthesizer or get_response_synthesizer(
            llm=self._llm, callback_manager=callback_manager
        )

        super().__init__(callback_manager=callback_manager)

    def _get_prompts(self) -> Dict[str, Any]:
        """Get prompts."""
        return {
            "graph_query_synthesis_prompt": self._graph_query_synthesis_prompt,
            "graph_response_answer_prompt": self._graph_response_answer_prompt,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "graph_query_synthesis_prompt" in prompts:
            self._graph_query_synthesis_prompt = prompts["graph_query_synthesis_prompt"]
        if "graph_response_answer_prompt" in prompts:
            self._graph_response_answer_prompt = prompts["graph_response_answer_prompt"]

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {"response_synthesizer": self._response_synthesizer}

    def generate_query(self, query_str: str) -> str:
        """Generate a Graph Store Query from a query bundle."""
        # Get the query engine query string

        graph_store_query: str = self._llm.predict(
            self._graph_query_synthesis_prompt,
            query_str=query_str,
            schema=self._graph_schema,
        )

        return graph_store_query

    async def agenerate_query(self, query_str: str) -> str:
        """Generate a Graph Store Query from a query bundle."""
        # Get the query engine query string

        graph_store_query: str = await self._llm.apredict(
            self._graph_query_synthesis_prompt,
            query_str=query_str,
            schema=self._graph_schema,
        )

        return graph_store_query

    def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """Get nodes for response."""
        graph_store_query = self.generate_query(query_bundle.query_str)
        if self._verbose:
            print_text(f"Graph Store Query:\n{graph_store_query}\n", color="yellow")
        logger.debug(f"Graph Store Query:\n{graph_store_query}")

        with self.callback_manager.event(
            CBEventType.RETRIEVE,
            payload={EventPayload.QUERY_STR: graph_store_query},
        ) as retrieve_event:
            # Get the graph store response
            graph_store_response = self.graph_store.query(query=graph_store_query)
            if self._verbose:
                print_text(
                    f"Graph Store Response:\n{graph_store_response}\n",
                    color="yellow",
                )
            logger.debug(f"Graph Store Response:\n{graph_store_response}")

            retrieve_event.on_end(payload={EventPayload.RESPONSE: graph_store_response})

        retrieved_graph_context: Sequence = self._graph_response_answer_prompt.format(
            query_str=query_bundle.query_str,
            kg_query_str=graph_store_query,
            kg_response_str=graph_store_response,
        )

        node = NodeWithScore(
            node=TextNode(
                text=retrieved_graph_context,
                metadata={
                    "query_str": query_bundle.query_str,
                    "graph_store_query": graph_store_query,
                    "graph_store_response": graph_store_response,
                    "graph_schema": self._graph_schema,
                },
            ),
            score=1.0,
        )
        return [node]

    def _query(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Query the graph store."""
        with self.callback_manager.event(
            CBEventType.QUERY, payload={EventPayload.QUERY_STR: query_bundle.query_str}
        ) as query_event:
            nodes: List[NodeWithScore] = self._retrieve(query_bundle)

            response = self._response_synthesizer.synthesize(
                query=query_bundle,
                nodes=nodes,
            )

            if self._verbose:
                print_text(f"Final Response: {response}\n", color="green")

            query_event.on_end(payload={EventPayload.RESPONSE: response})

        return response

    async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        graph_store_query = await self.agenerate_query(query_bundle.query_str)
        if self._verbose:
            print_text(f"Graph Store Query:\n{graph_store_query}\n", color="yellow")
        logger.debug(f"Graph Store Query:\n{graph_store_query}")

        with self.callback_manager.event(
            CBEventType.RETRIEVE,
            payload={EventPayload.QUERY_STR: graph_store_query},
        ) as retrieve_event:
            # Get the graph store response
            # TBD: This is a blocking call. We need to make it async.
            graph_store_response = self.graph_store.query(query=graph_store_query)
            if self._verbose:
                print_text(
                    f"Graph Store Response:\n{graph_store_response}\n",
                    color="yellow",
                )
            logger.debug(f"Graph Store Response:\n{graph_store_response}")

            retrieve_event.on_end(payload={EventPayload.RESPONSE: graph_store_response})

        retrieved_graph_context: Sequence = self._graph_response_answer_prompt.format(
            query_str=query_bundle.query_str,
            kg_query_str=graph_store_query,
            kg_response_str=graph_store_response,
        )

        node = NodeWithScore(
            node=TextNode(
                text=retrieved_graph_context,
                metadata={
                    "query_str": query_bundle.query_str,
                    "graph_store_query": graph_store_query,
                    "graph_store_response": graph_store_response,
                    "graph_schema": self._graph_schema,
                },
            ),
            score=1.0,
        )
        return [node]

    async def _aquery(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Query the graph store."""
        with self.callback_manager.event(
            CBEventType.QUERY, payload={EventPayload.QUERY_STR: query_bundle.query_str}
        ) as query_event:
            nodes = await self._aretrieve(query_bundle)
            response = await self._response_synthesizer.asynthesize(
                query=query_bundle,
                nodes=nodes,
            )

            if self._verbose:
                print_text(f"Final Response: {response}\n", color="green")

            query_event.on_end(payload={EventPayload.RESPONSE: response})

        return response

generate_query #

generate_query(query_str: str) -> str

Generate a Graph Store Query from a query bundle.

Source code in llama-index-core/llama_index/core/query_engine/knowledge_graph_query_engine.py
124
125
126
127
128
129
130
131
132
133
134
def generate_query(self, query_str: str) -> str:
    """Generate a Graph Store Query from a query bundle."""
    # Get the query engine query string

    graph_store_query: str = self._llm.predict(
        self._graph_query_synthesis_prompt,
        query_str=query_str,
        schema=self._graph_schema,
    )

    return graph_store_query

agenerate_query async #

agenerate_query(query_str: str) -> str

Generate a Graph Store Query from a query bundle.

Source code in llama-index-core/llama_index/core/query_engine/knowledge_graph_query_engine.py
136
137
138
139
140
141
142
143
144
145
146
async def agenerate_query(self, query_str: str) -> str:
    """Generate a Graph Store Query from a query bundle."""
    # Get the query engine query string

    graph_store_query: str = await self._llm.apredict(
        self._graph_query_synthesis_prompt,
        query_str=query_str,
        schema=self._graph_schema,
    )

    return graph_store_query