Skip to content

Citation

CitationQueryEngine #

Bases: BaseQueryEngine

Citation query engine.

Parameters:

Name Type Description Default
retriever BaseRetriever

A retriever object.

required
response_synthesizer Optional[BaseSynthesizer]

A BaseSynthesizer object.

None
citation_chunk_size int

Size of citation chunks, default=512. Useful for controlling granularity of sources.

DEFAULT_CITATION_CHUNK_SIZE
citation_chunk_overlap int

Overlap of citation nodes, default=20.

DEFAULT_CITATION_CHUNK_OVERLAP
text_splitter Optional[TextSplitter]

A text splitter for creating citation source nodes. Default is a SentenceSplitter.

None
callback_manager Optional[CallbackManager]

A callback manager.

None
metadata_mode MetadataMode

A MetadataMode object that controls how metadata is included in the citation prompt.

NONE
Source code in llama-index-core/llama_index/core/query_engine/citation_query_engine.py
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
class CitationQueryEngine(BaseQueryEngine):
    """Citation query engine.

    Args:
        retriever (BaseRetriever): A retriever object.
        response_synthesizer (Optional[BaseSynthesizer]):
            A BaseSynthesizer object.
        citation_chunk_size (int):
            Size of citation chunks, default=512. Useful for controlling
            granularity of sources.
        citation_chunk_overlap (int): Overlap of citation nodes, default=20.
        text_splitter (Optional[TextSplitter]):
            A text splitter for creating citation source nodes. Default is
            a SentenceSplitter.
        callback_manager (Optional[CallbackManager]): A callback manager.
        metadata_mode (MetadataMode): A MetadataMode object that controls how
            metadata is included in the citation prompt.
    """

    def __init__(
        self,
        retriever: BaseRetriever,
        llm: Optional[LLM] = None,
        response_synthesizer: Optional[BaseSynthesizer] = None,
        citation_chunk_size: int = DEFAULT_CITATION_CHUNK_SIZE,
        citation_chunk_overlap: int = DEFAULT_CITATION_CHUNK_OVERLAP,
        text_splitter: Optional[TextSplitter] = None,
        node_postprocessors: Optional[List[BaseNodePostprocessor]] = None,
        callback_manager: Optional[CallbackManager] = None,
        metadata_mode: MetadataMode = MetadataMode.NONE,
    ) -> None:
        self.text_splitter = text_splitter or SentenceSplitter(
            chunk_size=citation_chunk_size, chunk_overlap=citation_chunk_overlap
        )
        self._retriever = retriever

        callback_manager = callback_manager or Settings.callback_manager
        llm = llm or Settings.llm

        self._response_synthesizer = response_synthesizer or get_response_synthesizer(
            llm=llm,
            callback_manager=callback_manager,
        )
        self._node_postprocessors = node_postprocessors or []
        self._metadata_mode = metadata_mode

        for node_postprocessor in self._node_postprocessors:
            node_postprocessor.callback_manager = callback_manager

        super().__init__(callback_manager=callback_manager)

    @classmethod
    def from_args(
        cls,
        index: BaseGPTIndex,
        llm: Optional[LLM] = None,
        response_synthesizer: Optional[BaseSynthesizer] = None,
        citation_chunk_size: int = DEFAULT_CITATION_CHUNK_SIZE,
        citation_chunk_overlap: int = DEFAULT_CITATION_CHUNK_OVERLAP,
        text_splitter: Optional[TextSplitter] = None,
        citation_qa_template: BasePromptTemplate = CITATION_QA_TEMPLATE,
        citation_refine_template: BasePromptTemplate = CITATION_REFINE_TEMPLATE,
        retriever: Optional[BaseRetriever] = None,
        node_postprocessors: Optional[List[BaseNodePostprocessor]] = None,
        # response synthesizer args
        response_mode: ResponseMode = ResponseMode.COMPACT,
        use_async: bool = False,
        streaming: bool = False,
        # class-specific args
        metadata_mode: MetadataMode = MetadataMode.NONE,
        **kwargs: Any,
    ) -> "CitationQueryEngine":
        """Initialize a CitationQueryEngine object.".

        Args:
            index: (BastGPTIndex): index to use for querying
            llm: (Optional[LLM]): LLM object to use for response generation.
            citation_chunk_size (int):
                Size of citation chunks, default=512. Useful for controlling
                granularity of sources.
            citation_chunk_overlap (int): Overlap of citation nodes, default=20.
            text_splitter (Optional[TextSplitter]):
                A text splitter for creating citation source nodes. Default is
                a SentenceSplitter.
            citation_qa_template (BasePromptTemplate): Template for initial citation QA
            citation_refine_template (BasePromptTemplate):
                Template for citation refinement.
            retriever (BaseRetriever): A retriever object.
            node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of
                node postprocessors.
            verbose (bool): Whether to print out debug info.
            response_mode (ResponseMode): A ResponseMode object.
            use_async (bool): Whether to use async.
            streaming (bool): Whether to use streaming.
            optimizer (Optional[BaseTokenUsageOptimizer]): A BaseTokenUsageOptimizer
                object.

        """
        retriever = retriever or index.as_retriever(**kwargs)

        response_synthesizer = response_synthesizer or get_response_synthesizer(
            llm=llm,
            text_qa_template=citation_qa_template,
            refine_template=citation_refine_template,
            response_mode=response_mode,
            use_async=use_async,
            streaming=streaming,
        )

        return cls(
            retriever=retriever,
            llm=llm,
            response_synthesizer=response_synthesizer,
            callback_manager=Settings.callback_manager,
            citation_chunk_size=citation_chunk_size,
            citation_chunk_overlap=citation_chunk_overlap,
            text_splitter=text_splitter,
            node_postprocessors=node_postprocessors,
            metadata_mode=metadata_mode,
        )

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {"response_synthesizer": self._response_synthesizer}

    def _create_citation_nodes(self, nodes: List[NodeWithScore]) -> List[NodeWithScore]:
        """Modify retrieved nodes to be granular sources."""
        new_nodes: List[NodeWithScore] = []
        for node in nodes:
            text_chunks = self.text_splitter.split_text(
                node.node.get_content(metadata_mode=self._metadata_mode)
            )

            for text_chunk in text_chunks:
                text = f"Source {len(new_nodes) + 1}:\n{text_chunk}\n"

                new_node = NodeWithScore(
                    node=TextNode.model_validate(node.node.model_dump()),
                    score=node.score,
                )
                new_node.node.set_content(text)
                new_nodes.append(new_node)
        return new_nodes

    def retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        nodes = self._retriever.retrieve(query_bundle)

        for postprocessor in self._node_postprocessors:
            nodes = postprocessor.postprocess_nodes(nodes, query_bundle=query_bundle)

        return nodes

    async def aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        nodes = await self._retriever.aretrieve(query_bundle)

        for postprocessor in self._node_postprocessors:
            nodes = postprocessor.postprocess_nodes(nodes, query_bundle=query_bundle)

        return nodes

    @property
    def retriever(self) -> BaseRetriever:
        """Get the retriever object."""
        return self._retriever

    def synthesize(
        self,
        query_bundle: QueryBundle,
        nodes: List[NodeWithScore],
        additional_source_nodes: Optional[Sequence[NodeWithScore]] = None,
    ) -> RESPONSE_TYPE:
        nodes = self._create_citation_nodes(nodes)
        return self._response_synthesizer.synthesize(
            query=query_bundle,
            nodes=nodes,
            additional_source_nodes=additional_source_nodes,
        )

    async def asynthesize(
        self,
        query_bundle: QueryBundle,
        nodes: List[NodeWithScore],
        additional_source_nodes: Optional[Sequence[NodeWithScore]] = None,
    ) -> RESPONSE_TYPE:
        nodes = self._create_citation_nodes(nodes)
        return await self._response_synthesizer.asynthesize(
            query=query_bundle,
            nodes=nodes,
            additional_source_nodes=additional_source_nodes,
        )

    def _query(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Answer a query."""
        with self.callback_manager.event(
            CBEventType.QUERY, payload={EventPayload.QUERY_STR: query_bundle.query_str}
        ) as query_event:
            with self.callback_manager.event(
                CBEventType.RETRIEVE,
                payload={EventPayload.QUERY_STR: query_bundle.query_str},
            ) as retrieve_event:
                nodes = self.retrieve(query_bundle)
                nodes = self._create_citation_nodes(nodes)

                retrieve_event.on_end(payload={EventPayload.NODES: nodes})

            response = self._response_synthesizer.synthesize(
                query=query_bundle,
                nodes=nodes,
            )

            query_event.on_end(payload={EventPayload.RESPONSE: response})

        return response

    async def _aquery(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Answer a query."""
        with self.callback_manager.event(
            CBEventType.QUERY, payload={EventPayload.QUERY_STR: query_bundle.query_str}
        ) as query_event:
            with self.callback_manager.event(
                CBEventType.RETRIEVE,
                payload={EventPayload.QUERY_STR: query_bundle.query_str},
            ) as retrieve_event:
                nodes = await self.aretrieve(query_bundle)
                nodes = self._create_citation_nodes(nodes)

                retrieve_event.on_end(payload={EventPayload.NODES: nodes})

            response = await self._response_synthesizer.asynthesize(
                query=query_bundle,
                nodes=nodes,
            )

            query_event.on_end(payload={EventPayload.RESPONSE: response})

        return response

retriever property #

retriever: BaseRetriever

Get the retriever object.

from_args classmethod #

from_args(index: BaseGPTIndex, llm: Optional[LLM] = None, response_synthesizer: Optional[BaseSynthesizer] = None, citation_chunk_size: int = DEFAULT_CITATION_CHUNK_SIZE, citation_chunk_overlap: int = DEFAULT_CITATION_CHUNK_OVERLAP, text_splitter: Optional[TextSplitter] = None, citation_qa_template: BasePromptTemplate = CITATION_QA_TEMPLATE, citation_refine_template: BasePromptTemplate = CITATION_REFINE_TEMPLATE, retriever: Optional[BaseRetriever] = None, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, response_mode: ResponseMode = COMPACT, use_async: bool = False, streaming: bool = False, metadata_mode: MetadataMode = NONE, **kwargs: Any) -> CitationQueryEngine

Initialize a CitationQueryEngine object.".

Parameters:

Name Type Description Default
index BaseGPTIndex

(BastGPTIndex): index to use for querying

required
llm Optional[LLM]

(Optional[LLM]): LLM object to use for response generation.

None
citation_chunk_size int

Size of citation chunks, default=512. Useful for controlling granularity of sources.

DEFAULT_CITATION_CHUNK_SIZE
citation_chunk_overlap int

Overlap of citation nodes, default=20.

DEFAULT_CITATION_CHUNK_OVERLAP
text_splitter Optional[TextSplitter]

A text splitter for creating citation source nodes. Default is a SentenceSplitter.

None
citation_qa_template BasePromptTemplate

Template for initial citation QA

CITATION_QA_TEMPLATE
citation_refine_template BasePromptTemplate

Template for citation refinement.

CITATION_REFINE_TEMPLATE
retriever BaseRetriever

A retriever object.

None
node_postprocessors Optional[List[BaseNodePostprocessor]]

A list of node postprocessors.

None
verbose bool

Whether to print out debug info.

required
response_mode ResponseMode

A ResponseMode object.

COMPACT
use_async bool

Whether to use async.

False
streaming bool

Whether to use streaming.

False
optimizer Optional[BaseTokenUsageOptimizer]

A BaseTokenUsageOptimizer object.

required
Source code in llama-index-core/llama_index/core/query_engine/citation_query_engine.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
@classmethod
def from_args(
    cls,
    index: BaseGPTIndex,
    llm: Optional[LLM] = None,
    response_synthesizer: Optional[BaseSynthesizer] = None,
    citation_chunk_size: int = DEFAULT_CITATION_CHUNK_SIZE,
    citation_chunk_overlap: int = DEFAULT_CITATION_CHUNK_OVERLAP,
    text_splitter: Optional[TextSplitter] = None,
    citation_qa_template: BasePromptTemplate = CITATION_QA_TEMPLATE,
    citation_refine_template: BasePromptTemplate = CITATION_REFINE_TEMPLATE,
    retriever: Optional[BaseRetriever] = None,
    node_postprocessors: Optional[List[BaseNodePostprocessor]] = None,
    # response synthesizer args
    response_mode: ResponseMode = ResponseMode.COMPACT,
    use_async: bool = False,
    streaming: bool = False,
    # class-specific args
    metadata_mode: MetadataMode = MetadataMode.NONE,
    **kwargs: Any,
) -> "CitationQueryEngine":
    """Initialize a CitationQueryEngine object.".

    Args:
        index: (BastGPTIndex): index to use for querying
        llm: (Optional[LLM]): LLM object to use for response generation.
        citation_chunk_size (int):
            Size of citation chunks, default=512. Useful for controlling
            granularity of sources.
        citation_chunk_overlap (int): Overlap of citation nodes, default=20.
        text_splitter (Optional[TextSplitter]):
            A text splitter for creating citation source nodes. Default is
            a SentenceSplitter.
        citation_qa_template (BasePromptTemplate): Template for initial citation QA
        citation_refine_template (BasePromptTemplate):
            Template for citation refinement.
        retriever (BaseRetriever): A retriever object.
        node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of
            node postprocessors.
        verbose (bool): Whether to print out debug info.
        response_mode (ResponseMode): A ResponseMode object.
        use_async (bool): Whether to use async.
        streaming (bool): Whether to use streaming.
        optimizer (Optional[BaseTokenUsageOptimizer]): A BaseTokenUsageOptimizer
            object.

    """
    retriever = retriever or index.as_retriever(**kwargs)

    response_synthesizer = response_synthesizer or get_response_synthesizer(
        llm=llm,
        text_qa_template=citation_qa_template,
        refine_template=citation_refine_template,
        response_mode=response_mode,
        use_async=use_async,
        streaming=streaming,
    )

    return cls(
        retriever=retriever,
        llm=llm,
        response_synthesizer=response_synthesizer,
        callback_manager=Settings.callback_manager,
        citation_chunk_size=citation_chunk_size,
        citation_chunk_overlap=citation_chunk_overlap,
        text_splitter=text_splitter,
        node_postprocessors=node_postprocessors,
        metadata_mode=metadata_mode,
    )