Skip to content

Tei rerank

TextEmbeddingInference #

Bases: BaseNodePostprocessor

Source code in llama-index-integrations/postprocessor/llama-index-postprocessor-tei-rerank/llama_index/postprocessor/tei_rerank/base.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
class TextEmbeddingInference(BaseNodePostprocessor):
    base_url: str = Field(
        default=DEFAULT_URL,
        description="Base URL for the text embeddings service.",
    )
    top_n: int = Field(
        default=TOP_N, description="Number of nodes to return sorted by score."
    )
    keep_retrieval_score: bool = Field(
        default=False,
        description="Whether to keep the retrieval score in metadata.",
    )
    timeout: float = Field(
        default=60.0,
        description="Timeout in seconds for the request.",
    )
    truncate_text: bool = Field(
        default=True,
        description="Whether to truncate text or not when generating embeddings.",
    )
    auth_token: Optional[Union[str, Callable[[str], str]]] = Field(
        default=None,
        description="Authentication token or authentication token generating function for authenticated requests",
    )
    model_name: str = Field(
        default="API",
        description="Base URL for the text embeddings service.",
    )

    mode: str = Field(
        default="text",
        description="Re-ranking Method, full for including meta-data too.",
    )

    def __init__(
        self,
        top_n: int = TOP_N,
        base_url: str = DEFAULT_URL,
        text_instruction: Optional[str] = None,
        query_instruction: Optional[str] = None,
        timeout: float = 60.0,
        truncate_text: bool = True,
        auth_token: Optional[Union[str, Callable[[str], str]]] = None,
        model_name="API",
    ):
        super().__init__(
            base_url=base_url,
            top_n=top_n,
            text_instruction=text_instruction,
            query_instruction=query_instruction,
            timeout=timeout,
            truncate_text=truncate_text,
            auth_token=auth_token,
            model_name=model_name,
            mode="text",
        )

    @classmethod
    def class_name(cls) -> str:
        return "TextEmbeddingsInference"

    def _call_api(self, query: str, texts: List[str]) -> List[float]:
        headers = {"Content-Type": "application/json"}
        if self.auth_token is not None:
            if callable(self.auth_token):
                headers["Authorization"] = self.auth_token(self.base_url)
            else:
                headers["Authorization"] = self.auth_token

        json_data = {"query": query, "texts": texts}

        with httpx.Client() as client:
            response = client.post(
                f"{self.base_url}/rerank",
                headers=headers,
                json=json_data,
                timeout=self.timeout,
            )

        return response.json()

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        dispatcher.event(
            ReRankStartEvent(
                query=query_bundle,
                nodes=nodes,
                top_n=self.top_n,
                model_name=self.model_name,
            )
        )

        if query_bundle is None:
            raise ValueError("Missing query bundle in extra info.")
        if len(nodes) == 0:
            return []

        query = query_bundle.query_str
        if self.mode == "full":
            texts = [
                node.node.get_content(metadata_mode=MetadataMode.EMBED)
                for node in nodes
            ]
        elif self.mode == "text":
            texts = [node.text for node in nodes]
        else:
            warnings.warn('Re-Ranking Mode defaulting to mode "text"')
            texts = [node.text for node in nodes]

        with self.callback_manager.event(
            CBEventType.RERANKING,
            payload={
                EventPayload.NODES: nodes,
                EventPayload.QUERY_STR: query_bundle.query_str,
                EventPayload.TOP_K: self.top_n,
            },
        ) as event:
            scores = self._call_api(query, texts)
            assert len(scores) == len(nodes)

            for node, score in zip(nodes, scores):
                if self.keep_retrieval_score:
                    # keep the retrieval score in metadata
                    node.node.metadata["retrieval_score"] = node.score
                node.score = float(score["score"])

            new_nodes = sorted(nodes, key=lambda x: -x.score if x.score else 0)[
                : self.top_n
            ]
            event.on_end(payload={EventPayload.NODES: new_nodes})

        dispatcher.event(ReRankEndEvent(nodes=new_nodes))
        return new_nodes